Publications by authors named "Thapper A"

The reduction of stable trivalent lanthanide species (Ln(III)) by the excited states of organic chromophores is the basis of photocatalytic divalent lanthanide-mediated reduction reactions. While indirect evidence of the photochemical formation of the reactive Ln(II) species is abundant, direct spectroscopic evidence of their presence is scarce. Here, nine chromophores with absorptions covering the near UV and visible ranges were systematically investigated in the presence of Ln(III) ions to evaluate their ability to reduce Eu(III) upon excitation with visible light to the catalytically active Eu(II) species.

View Article and Find Full Text PDF

Commercially available coumarin 343 in combination with reducible Sm(III) ions catalyzed divalent lanthanide-mediated C═O, C-halogen, P-Cl, and N═N reductions at ambient temperature in aqueous solvent mixtures. The catalyst absorbs visible light efficiently. The active divalent species is formed by photoinduced electron transfer from coumarin 343 to the stable trivalent precursor, and the coumarin could be regenerated by strictly 1 equiv of ascorbic acid.

View Article and Find Full Text PDF

The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC led to the isolation of mono-, di-, and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals.

View Article and Find Full Text PDF

Thiele's Hydrocarbons (THs) featuring a 9,10-anthrylene core with switchable geometric and electronic configurations offer exciting possibilities in advanced functional materials. Despite significant advances in main group-based diradicaloids in contemporary chemistry, main group THs containing an anthrylene cores have remained elusive, primarily due to the lack of straightforward synthetic strategies and the inherent high reactivity of these species. In this study, we utilize an anthracene-based phosphine synthon to demonstrate, for the first time, a facile and high-yielding synthetic strategy for robust P-functionalized overcrowded ethylenes (OCEs) within the TH family.

View Article and Find Full Text PDF

Divalent lanthanide (Ln) compounds are excellent reducing agents with unique reactivity profiles. These reagents are typically used in superstoichiometric amounts, often in combination with harmful additives. Reactions catalytic in Ln(II) reagents that retain the reactivity and selectivity of the stoichiometric transformations are currently lacking due to the absence of effective and selective methods to form reactive Ln(II) species from stable precursors.

View Article and Find Full Text PDF

Solar conversion of water into the storable energy carrier H can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O and H evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore () and a tetra-adamantane modified cobaloxime reduction catalyst () that photo-reduces aqueous protons to H.

View Article and Find Full Text PDF

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5)Cl] (Py5 = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)]/SO system at pH 8.

View Article and Find Full Text PDF

Developing new transition metal catalysts requires understanding of how both metal and ligand properties determine reactivity. Since metal complexes bearing ligands of the Py5 family (2,6-bis-[(2-pyridyl)methyl]pyridine) have been employed in many fields in the past 20 years, we set out here to understand their redox properties by studying a series of base metal ions (M = Mn, Fe, Co, and Ni) within the Py5OH (pyridine-2,6-diylbis[di-(pyridin-2-yl)methanol]) variant. Both reduced (M) and the one-electron oxidized (M) species were carefully characterized using a combination of X-ray crystallography, X-ray absorption spectroscopy, cyclic voltammetry, and density-functional theory calculations.

View Article and Find Full Text PDF

Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination.

View Article and Find Full Text PDF

Ferrous chloride complexes [FeLCl] commonly attain a high-spin state independently of the supporting ligand(s) and temperature. Herein, we present the first report of a complete spin crossover with T = 80 K in [Fe(Py5OH)Cl] (Py5OH = pyridine-2,6-diylbis[di(pyridin-2-yl)methanol]). Both spin forms of the complex are analyzed by X-ray spectroscopy and DFT calculations.

View Article and Find Full Text PDF

A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage.

View Article and Find Full Text PDF

This work demonstrates that simple copper-bipyridine compounds and atmospheric CO2 react to produce useful/complex materials under appropriate conditions. Starting from a distorted square planar copper(ii) complex, [(tbubpy)CuCl2](tbubpy = 4-tert-butyl-2-(4-tert-butylpyridin-2-yl)pyridine), an air-sensitive, copper(i) complex, [(tbubpy)2CuI][BF4], which exhibits a distorted tetrahedral geometry, was synthesized and characterized. Reactions of [(tbubpy)2CuI][BF4] with CO2 inside a sealed tube and with air were carried out over a week and three weeks, respectively.

View Article and Find Full Text PDF

Abstract: ,-Diphenyl-3,7-diazacyclooctane and structurally related ,-diphenylbispidine derivatives react with silver(I) ions in a high-yielding C-C coupling reaction to produce dication-diradical species, with the silver ions serving a double function both as template and as an oxidant. The resulting bis(benzidino)phane derivatives are persistent organic radicals, stable for several months in solution as well as in the solid state, at room temperature and above, as well as being exposed to the atmosphere. The molecular structure features a double-decker cyclophane motif, stabilized by intramolecular π-dimerization of two delocalized benzidinium radical segments.

View Article and Find Full Text PDF

Herein, we report three Ir Cp* complexes with hydroxy- or amino-functionalized N-heterocyclic carbene (NHC) ligands that catalyze efficient water oxidation induced by addition of ceric ammonium nitrate (CAN). The pendant hydroxy or amino groups are very important for activity, and the complexes with heteroatom-functionalized NHC ligands show up to 15 times higher rates of oxygen evolution in CAN-induced water oxidation than a reference Ir Cp* complex without heteroatom functionalization. The formation of molecular high-valent Ir intermediates that are presumably involved in the rate-determining step for water oxidation is established by UV/Vis spectroscopy and ESI-MS under turnover conditions.

View Article and Find Full Text PDF

The heterometallic complexes (NH ) [Co(H O) ] [V O ]⋅4 H O (1) and (NH ) [Co(H O) (β-HAla)] [V O ]⋅4 H O (2) have been synthesized and used for the preparation of mixed oxides as catalysts for water oxidation. Thermal decomposition of 1 and 2 at relatively low temperatures (<500 °C) leads to the formation of the solid mixed oxides CoV O /V O (3) and Co V O /V O (4). The complexes (1, 2) and heterogeneous materials (3, 4) act as catalysts for photoinduced water oxidation.

View Article and Find Full Text PDF

The development of molecular water oxidation catalysts based on earth-abundant, non-noble metals is essential for artificial photosynthesis research. Iron, which is the most abundant transition metal in the earth's crust, is a prospective candidate for this purpose. Herein, we report two iron complexes based on the polypyridyl ligand Py5OH (Py5OH=pyridine-2,6-diylbis [di(pyridin-2-yl)methanol]) that can catalyse water oxidation to produce O2 in Ru(III) -induced (at pH 8, highest turnover number (TON)=26.

View Article and Find Full Text PDF

The influence of molybdenum content in the solid solutions of Bi1-x/3V1-xMoxO4 (x = 0.05-0.20) on the morphology, band gap, structure and light-driven water oxidation properties has been studied by scanning electron microscopy, X-ray powder diffraction and vibrational spectroscopy (Raman and infrared).

View Article and Find Full Text PDF

A mononuclear cobalt(II) complex as a homogeneous molecular catalyst for photochemically, electrochemically and chemically induced oxygen evolution reactions is presented. Experimental evidence points towards the presence of a chloride ligand at the cobalt centre throughout the catalytic cycle, and the temporary detachment of a pyridine ligand to open a coordination site for substrate binding.

View Article and Find Full Text PDF

The dinuclear Co complex [(TPA)Co(μ-OH)(μ-O2 )Co(TPA)](ClO4 )3 (1, TPA=tris(2-pyridylmethyl)amine) catalyzes the oxidation of water. In the presence of [Ru(bpy)3 ](2+) and S2 O8 (2-) , photoinduced oxygen evolution can be observed with a turnover frequency (TOF) of 1.4±0.

View Article and Find Full Text PDF

Two types of manganese oxides have been prepared by hydrolysis of tetranuclear Mn(iii) complexes in the presence or absence of phosphate ions. The oxides have been characterized structurally using X-ray absorption spectroscopy and functionally by O2 evolution measurements. The structures of the oxides prepared in the absence of phosphate are dominated by di-μ-oxo bridged manganese ions that form layers with limited long-range order, consisting of edge-sharing MnO6 octahedra.

View Article and Find Full Text PDF

A novel approach to anchor a molecular photosensitizer onto a heterogeneous water oxidation catalyst via coordination bonds is presented. A photosensitizer (1) based on [Ru(bpy)3](2+) and decorated with two methylenediphosphonate (M2P) groups has been designed and synthesized for this purpose. The M2P groups in complex 1 allow for coordination of cobalt ions to afford a novel molecular-heterogeneous hybrid material P1.

View Article and Find Full Text PDF

Early intermediates of catalytic water reduction by a Co(II)-polypyridyl species have been characterized. Electrochemical detection of the Co(III)-hydride and time-resolved spectroscopic detection of the Co(I)-ligand intermediates provide an understanding of their reactivity in electrolytic or light-driven reduction of protons to hydrogen.

View Article and Find Full Text PDF

In order to gain insights into the interplay between Cu(I) and Cu(II) in sulfur-rich protein environments, the first preparation and characterization of copper-substituted forms of the wild-type rubredoxin (Rd) from Desulfovibrio vulgaris Hildenborough are reported, as well as those of its variant C42A-Rd. The initial products appear to be tetrahedral Cu(I)(S-Cys)n species for the wild type (n=4) and the variant C42A (n=3, with an additional unidentified ligand). These species are unstable to aerial oxidation to products, whose properties are consistent with square planar Cu(II)(S-Cys)n species.

View Article and Find Full Text PDF

A rare example of a "monomeric" triple transition-metal substituted Keggin anion has been synthesized and characterized by various methods including X-ray crystallography, ESI and MALDI mass spectrometry, electrochemistry, EPR, and SQUID.

View Article and Find Full Text PDF

The carboxylate stretching frequencies of two high-valent, di-μ-oxido bridged, manganese dimers has been studied with IR spectroscopy in three different oxidation states. Both complexes contain one monodentate carboxylate donor to each Mn ion, in one complex, the carboxylate is coordinated perpendicular to the Mn-(μ-O)(2)-Mn plane, and in the other complex, the carboxylate is coordinated in the Mn-(μ-O)(2)-Mn plane. For both complexes, the difference between the asymmetric and the symmetric carboxylate stretching frequencies decrease for both the Mn(2)(IV,IV) to Mn(2)(III,IV) transition and the Mn(2)(III,IV) to Mn(2)(III,III) transition, with only minor differences observed between the two arrangements of the carboxylate ligand versus the Mn-(μ-O)(2)-Mn plane.

View Article and Find Full Text PDF