Publications by authors named "Thao T Tang"

The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy.

View Article and Find Full Text PDF

Preferentially Expressed Antigen in Melanoma (PRAME), a cancer-testis antigen, provides an ideal target for immunotherapy in acute myeloid leukemia (AML). We have shown expression of PRAME in a significant subset of childhood and adult AML and lack of expression in normal hematopoiesis. Although an intracellular antigen, we developed a novel approach to target PRAME using a chimeric antigen receptor (CAR) construct encoding a targeting domain based on T-cell receptor (TCR) mimic antibodies that target the peptide-HLA complex.

View Article and Find Full Text PDF

As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan.

View Article and Find Full Text PDF

Mutations affecting DNA polymerase exonuclease domains or mismatch repair (MMR) generate "mutator" phenotypes capable of driving tumorigenesis. Cancers with both defects exhibit an explosive increase in mutation burden that appears to reach a threshold, consistent with selection acting against further mutation accumulation. In haploid yeast, simultaneous defects in polymerase proofreading and MMR select for "antimutator" mutants that suppress the mutator phenotype.

View Article and Find Full Text PDF

Mutations accumulate within somatic cells and have been proposed to contribute to aging. It is unclear what level of mutation burden may be required to consistently reduce cellular lifespan. Human cancers driven by a mutator phenotype represent an intriguing model to test this hypothesis, since they carry the highest mutation burdens of any human cell.

View Article and Find Full Text PDF