Publications by authors named "Thao T Olson"

Article Synopsis
  • Age-related changes in neurotransmitter systems, particularly involving norepinephrine (NE), are linked to cognitive decline, highlighting the potential for therapies that enhance neurotransmission.
  • In aged Fischer 344 rats, there was a significant decrease in glutamate-stimulated NE release in areas of the brain like the hippocampus and cerebral cortex, which is mediated by NMDA receptors.
  • The psychostimulant drug amphetamine (AMPH) not only restores NE release but also improves memory function and dendritic spine maturation, suggesting that repurposing such drugs could help address cognitive deficits associated with aging.
View Article and Find Full Text PDF

Desensitization of the nicotinic acetylcholine receptor (nAChR) containing the β2 subunit is a potentially critical mechanism underlying the body weight (BW) reducing effects of nicotine. The purpose of this study was a) to determine the α subunit(s) that partners with the β2 subunit to form the nAChR subtype that endogenously regulates energy balance and b) to probe the extent to which nAChR desensitization could be involved in the regulation of BW. We demonstrate that deletion of either the α4 or the β2, but not the α5, subunit of the nAChR suppresses weight gain in a sex-dependent manner.

View Article and Find Full Text PDF

Phantasmidine, a rigid congener of the well-known nicotinic acetylcholine receptor agonist epibatidine, is found in the same species of poison frog ( Epipedobates anthonyi). Natural phantasmidine was found to be a 4:1 scalemic mixture, enriched in the (2a R,4a S,9a S) enantiomer by chiral-phase LC-MS comparison to the synthetic enantiomers whose absolute configurations were previously established by Mosher's amide analysis. The major enantiomer has the opposite S configuration at the benzylic carbon to natural epibatidine, whose benzylic carbon is R.

View Article and Find Full Text PDF

Background: Animal models are needed to inform FDA regulation of electronic cigarettes (ECs) because they avoid limitations associated with human studies. We previously reported that an EC refill liquid produced less aversive/anhedonic effects at a high nicotine dose than nicotine alone as measured by elevations in intracranial self-stimulation (ICSS) thresholds, which may reflect the presence of behaviorally active non-nicotine constituents (e.g.

View Article and Find Full Text PDF

The 42 nicotinic acetylcholine receptor (nAChR) is important in central nervous system physiology and in mediating several of the pharmacological effects of nicotine on cognition, attention, and affective states. It is also the likely receptor that mediates nicotine addiction. This receptor assembles in two distinct stoichiometries: (4)(2) and (4)(2), which are referred to as high-sensitivity (HS) and low-sensitivity (LS) nAChRs, respectively, based on a difference in the potency of acetylcholine to activate them.

View Article and Find Full Text PDF

The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target.

View Article and Find Full Text PDF

AT-1001 [N-(2-bromophenyl)-9-methyl-9-azabicyclo[3.3.1] nonan-3-amine] is a high-affinity and highly selective ligand at α3β4 nicotinic cholinergic receptors (nAChRs) that was reported to decrease nicotine self-administration in rats.

View Article and Find Full Text PDF

The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine's actions in the brain.

View Article and Find Full Text PDF

Alpha7 nicotinic acetylcholine receptors (nAChRs) have implications in the regulation of cognitive processes such as memory and attention and have been identified as a promising therapeutic target for the treatment of the cognitive deficits associated with schizophrenia and Alzheimer's disease (AD). Structure affinity relationship studies of the previously described α7 agonist SEN12333 (8), have resulted in the identification of compound 45, a potent and selective agonist of the α7 nAChR with enhanced affinity and improved physicochemical properties over the parent compound (SEN12333, 8).

View Article and Find Full Text PDF

[(125)I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (K(i) = 0.5 nM; α7/α4β2 = 3414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1600Ci/mmol; 59.2 MBq/μmol).

View Article and Find Full Text PDF

Several lines of experimental evidence support the involvement of the α7 nAChR in schizophrenia and Alzheimer's disease. Modulators of the α7 nAChR have been extensively reviewed for the treatment of the cognitive deficits associated with these pathologies. SEN12333 represents a novel α7 nAChR agonist chemotype with potential for reduced side effects but requiring further SAR exploration.

View Article and Find Full Text PDF

The enantiomers of two analogs of Sazetidine-A as well as several other novel biosteric analogues were synthesized. Their binding affinities at three major nAChRs subtypes and selectivity profiles were determined. Though many (S)-enantiomers of Sazetidine-A analogs have high binding affinities and good subtype selectivities, it is not a general rule that (S)-enantiomers are better than their (R) counterparts.

View Article and Find Full Text PDF