DDT (dichlorodiphenyltrichloroethane) is a commonly used insecticide that is recalcitrant and highly stable in the environment. Currently, DDT residue contamination, especially in agricultural soil, is still a concern in many countries, threatening human health and the environment. Among the approaches to resolve such an issue, novel biodegradation-based methods are now preferred to physicochemical methods, due to the sustainability and the effectiveness of the former.
View Article and Find Full Text PDFThe microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.
View Article and Find Full Text PDFTuberculosis is one of the most common infectious diseases in the world, caused by . The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of , functioning as a chaperon when combined with the Clp complex.
View Article and Find Full Text PDFA novel bacterial strain, N4, was isolated from the soil of a groundnut field in Nghean province, Vietnam. The phylogenetic, chemotaxonomic and phenotypic characteristics of this strain were determined. Cells of strain N4 were Gram-negative, aerobic, endospore-forming and rod-shaped.
View Article and Find Full Text PDFQuorum sensing is the process by which microbial cells sense and respond to the co-presence of others in their surrounding, through the detection of their autoinducers associated with gene expression regulation and thereby controlling many physiological processes, such as biofilm formation and/or bioluminescence, etc. In Vibrio bacteria, where quorum sensing is relatively well understood with three commonly known autoinducers (HAI-1, AI-2 and CAI-1), both intra-species and inter-species cell-cell communications occur but no inter-Vibrio-species quorum sensing inhibition has been reported. In this study, by screening bacterial isolated from soil and mud samples in a northern province in Vietnam, we discovered a strain that reduced more than 75% of the bioluminescence of a Vibrio harveyi, with evidence showing that such an inhibition might be associated with quorum sensing inhibition.
View Article and Find Full Text PDFEndophytes can generate a cornucopia of marvelous bioactive secondary metabolites useful for mankind but their biodiversity and associations with host plants are still elusive. In this study, we explored the culturable endophytic microorganisms associated with 14 medicinal plants that are of high socio-economic value and/or reportedly endemic to northern Vietnam. Specifically, we isolated the endophytic microorganisms by applying surface sterilization methods and identified them based on morphological and rDNA sequence analyses.
View Article and Find Full Text PDFVirusdisease
December 2021
Porcine epidemic diarrhea virus (PEDV) causes diarrhea in pigs leading to severe illnesses and high mortality rates. The development of medicinal agents to treat PEDV infection is therefore crucial. In this study, antiviral activities against PEDV of ethanol and aqueous extracts of 17 Vietnamese traditional medicinal plants were evaluated using the cytopathic effect-based assay.
View Article and Find Full Text PDFAcid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and gene involved in sulfate reduction revealed that the isolate belonged to the genus , and is most closely related to (with 99% homology in 16S rDNA sequence and 98% homology in gene sequence).
View Article and Find Full Text PDFThe structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S).
View Article and Find Full Text PDFHeparan sulfate (HS) polysaccharide chains have been shown to orchestrate distinct biological functions in several systems. Study of HS structure-function relations is, however, hampered due to the lack of availability of HS in sufficient quantities as well as the molecular heterogeneity of naturally occurring HS. Enzymatic synthesis of HS is an attractive alternative to the use of naturally occurring HS, as it reduces molecular heterogeneity, or a long and daunting chemical synthesis of HS.
View Article and Find Full Text PDFHeparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells.
View Article and Find Full Text PDFHeparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi.
View Article and Find Full Text PDFHeparan sulfate (HS) proteoglycans regulate a number of biological functions in many systems. Most of the functions of HS are attributed to its unique structure, consisting of sulfated and non-sulfated domains, arising from the differential presence of iduronyl and glucuronyl residues along the polysaccharide chain. A single glucuronyl C5-epimerase enzyme acts on HS precursors, converts glucuronyl residues into iduronyl residues, and modulates subsequent biosynthetic steps in vivo.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2011
Heparan sulfate proteoglycans (HSPGs) are essential players in several steps of tumor-associated angiogenesis. As co-receptors for several pro-angiogenic factors such as VEGF and FGF, HSPGs regulate receptor-ligand interactions and play a vital role in signal transduction. Previously, we have employed an enzymatic strategy to show the importance of cell surface HSPGs in endothelial tube formation in vitro.
View Article and Find Full Text PDFVarious 4-deoxy-4-fluoro-xylosides were prepared using click chemistry for evaluating their potential utility as inhibitors of glycosaminoglycan biosynthesis. 2,3-Di-O-benzoyl-4-deoxy-4-fluoro-β-D-xylopyranosylazide, obtained from L-arabinopyranose by six steps, was treated with a wide variety of azide-reactive triple bond-containing hydrophobic agents in the presence of Cu(2+) salt/ascorbic acid, a step known as click chemistry. After click chemistry, benzoylated derivatives were deprotected under Zemplén conditions to obtain 4-deoxy-4-fluoro-xyloside derivatives.
View Article and Find Full Text PDF