Publications by authors named "Thannhauser T"

The gut microbiome of worms from composting facilities potentially harbors organisms that are beneficial to plant growth and development. In this experiment, we sought to examine the potential impacts of rhizosphere microbiomes derived from Eisenia fetida worm castings (i.e.

View Article and Find Full Text PDF

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive.

View Article and Find Full Text PDF

Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown.

View Article and Find Full Text PDF

Chlorophylls and carotenoids are essential photosynthetic pigments. Plants spatiotemporally coordinate the needs of chlorophylls and carotenoids for optimal photosynthesis and fitness in response to diverse environmental and developmental cues. However, how the biosynthesis pathways of these two pigments are coordinated, particularly at posttranslational level to allow rapid control, remains largely unknown.

View Article and Find Full Text PDF

Viruses can elicit varying types and severities of symptoms during plant host infection. We investigated changes in the proteome and transcriptome of plants infected by grapevine fanleaf virus (GFLV) with an emphasis on vein clearing symptom development. Comparative, time-course liquid chromatography tandem mass spectrometry and 3' ribonucleic acid sequencing analyses of plants infected by two wildtype GFLV strains, one symptomatic and one asymptomatic, and their asymptomatic mutant strains carrying a single amino acid change in the RNA-dependent RNA polymerase (RdRP) were conducted to identify host biochemical pathways involved in viral symptom development.

View Article and Find Full Text PDF

Broccoli is a vegetable appreciated by consumers for its nutritional properties, particularly for its high glucosinolate (GLS) content. However, broccoli shows a high rate of senescence during postharvest and the GLS content in inflorescences decreases sharply. Usually, postharvest studies on broccoli focus on inflorescences, ignoring the other tissues harvested such as the stems and main stalk.

View Article and Find Full Text PDF

Plant organs and tissues are comprised of an array of cell types often superimposed on a gradient of developmental stages. As a result, the ability to analyze and understand the synthesis, metabolism, and accumulation of plant biomolecules requires improved methods for cell- and tissue-specific analysis. Tomato (Solanum lycopersicum) is the world's most valuable fruit crop and is an important source of health-promoting dietary compounds, including carotenoids.

View Article and Find Full Text PDF

Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment.

View Article and Find Full Text PDF

The classic (violet, purple) gene of common bean () functions in a complex genetic network that controls seed coat and flower color and flavonoid content. was cloned to understand its role in the network and the evolution of its orthologs in the Viridiplantae. mapped genetically to a narrow interval on chromosome Pv06.

View Article and Find Full Text PDF

Aluminum (Al) toxicity primarily targets the root tips, inhibiting root growth and function and leading to crop yield losses on acidic soils. Previously we reported using laser capture microdissection (LCM) proteomics to identify Al-induced proteins in the outer layer cells in the transitional zone of tomato root-tips. This study aims to further characterize Al-induced proteomic dynamics from the outer to interior tissues, thus providing a panoramic view reflecting Al resistance in the root tip as a whole in tomatoes.

View Article and Find Full Text PDF

The Asian citrus psyllid () is a pest of citrus and the primary insect vector of the bacterial pathogen, ' Liberibacter asiaticus' (Las), which is associated with citrus greening disease. The citrus relative (orange jasmine) is a host plant of but is more resistant to Las compared with all tested genotypes. The effect of host switching of between (citron) and plants on the acquisition and transmission of Las was investigated.

View Article and Find Full Text PDF

The carotenoid content of plants can be increased by overexpression of the regulatory protein ORANGE (OR) or a mutant variant known as the 'golden SNP'. In the present study, a strong light-inducible promoter was used to overexpress either wild type CrOR (CrOR) or a mutated CrOR (CrOR) containing a single histidine substitution for a conserved arginine in the microalgae Chlamydomonas reinhardtii. Overexpression of CrOR and CrOR roughly doubled and tripled, respectively, the accumulation of several different carotenoids, including β-carotene, α-carotene, lutein and violaxanthin in C.

View Article and Find Full Text PDF

Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes.

View Article and Find Full Text PDF

Unlabelled: Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds.

View Article and Find Full Text PDF

High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood.

View Article and Find Full Text PDF

Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development.

View Article and Find Full Text PDF

Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS) suffers from ratio distortion. Synchronous precursor selection (SPS) MS has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage.

View Article and Find Full Text PDF

Flavonols are gaining increasing interests due to their diverse health benefits for humans. Broccoli is a main flavonol source in our diet, but the genetic variation of flavonols and their correlation with antioxidant capacity remain to be understood. Here, we examined variations of the two major flavonols kaempferol and quercetin in florets and leaves of 15 diverse broccoli accessions by ultra-performance liquid chromatography.

View Article and Find Full Text PDF

Background: Bacillus cereus is a bacterial species which grows efficiently on a wide range of carbon sources and accumulates biopolymer poly-hydroxybutyrate (PHB) up to 80% cell dry weight. PHB is an aliphatic polymer produced and stored intracellularly as a reservoir of carbon and energy, its mobilization is a key biological process for sporulation in Bacillus spp. Previously, B.

View Article and Find Full Text PDF

Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.

View Article and Find Full Text PDF

Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering.

View Article and Find Full Text PDF

This paper reports a laser capture microdissection-tandem mass tag-quantitative proteomics analysis of Al-sensitive cells in root tips. Cherry tomato (Solanum lycopersicum var. cerasiforme 'LA2710') seedlings were treated under 15 μM Al activity for 13 d.

View Article and Find Full Text PDF

Carotenoids exert multifaceted roles to plants and are critically important to humans. Phytoene synthase (PSY) is a major rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY in plants is normally found as a small enzyme family with up to three members.

View Article and Find Full Text PDF

Modern tomatoes have narrow genetic diversity limiting their improvement potential. We present a tomato pan-genome constructed using genome sequences of 725 phylogenetically and geographically representative accessions, revealing 4,873 genes absent from the reference genome. Presence/absence variation analyses reveal substantial gene loss and intense negative selection of genes and promoters during tomato domestication and improvement.

View Article and Find Full Text PDF

Genotyping-by-sequencing (GBS) was employed to construct a highly saturated genetic linkage map of a tomato ( L.) recombinant inbred line (RIL) population, derived from a cross between cultivar NC EBR-1 and the wild tomato L. accession LA2093.

View Article and Find Full Text PDF