Breast Cancer is the most predominant female cancer in developed as well as developing countries. The treatment strategies of breast cancers depends on an array of factors like age at diagnosis, menstrual status, dietary pattern, immunological response, genetic variations of the cancer cells etc. Recent technological advancements in cancer diagnosis lead to the emergence of gene expression pattern for better understanding of the tumor behavior.
View Article and Find Full Text PDFGestational trophoblastic diseases (GTD) are group of pregnancy-related tumors characterized by abnormal levels of 'β-hCG' with higher incidence in South-East Asia, especially India. Our laboratory has reported that wild-type BRCA1 transcriptionally regulates β-hCG in triple negative breast cancers (TNBCs). These factors culminated into analysis of BRCA1 status in GTD, which would emanate into elucidation of BRCA1- β-hCG relationship and unraveling etio-pathology of GTD.
View Article and Find Full Text PDFIt is known that Cancer Associated Fibroblast (CAFs) from the primary tumor site can accompany cancer cells to a secondary site during the process of metastasis. We hypothesize that these CAFs could be transformed to an altered cell type, which can be called as Metastasis Associated Fibroblasts (MAF) in turn can support, and convoy cancer cells for metastasis. There are no published reports that have characterized and distinguished CAFs from MAF.
View Article and Find Full Text PDFGestational trophoblastic diseases (GTD) encompass a group of placental tumors which mostly arise due to certain fertilization defects, resulting in the over-proliferation of trophoblasts. The major characteristic of this diseased state is that β-hCG rises up manifold than that is observed during pregnancy. The incidence of GTD when analyzed on a global scale, figures out that there is a greater risk in South-East Asia, the reason of which remains unclear.
View Article and Find Full Text PDFNovel chelated metal complexes were synthesized from carbohydrazones to thiocarbohydrazones using metal-based drug designing platforms and their combination effect with Pb, a naphthaquinone were analyzed for anticancer activity in breast cancer cell lines. A panel of BRCA1 wild-type and mutated breast cancer cells: MCF-7 (BRCA1 /ER ), MDA-MB-231 (BRCA1 /ERα ), HCC-1937 (BRCA1 /ERα ), HCC1937/wt BRCA1, MX1 (BRCA1 /ERα ), and MDA-MB-436 (BRCA1 /ERα ) were screened for anti-cancer activity. Cu (HL)(HSO ) · H O]SO · 6 H O (CS2) is the most potent anticancer agent among the copper carbohydrazone and thiocarbohydrazone complexes analyzed in this study.
View Article and Find Full Text PDFMammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences.
View Article and Find Full Text PDFIt has been reported that Breast Cancer Susceptibility gene-1 & 2 (BRCA1 & 2 are potential molecular targets for chemoprevention by isoflavone genistein (4' 5, 7-trihydroxy isoflavone), in breast and prostate cancer cells. It is also known that BRCA1 has inhibitory activity on estrogen receptor-alpha and genistein's action on cells is mainly through modulation of estrogen receptor activity. The action of genistein with respect to BRCA1 status in ovarian cancer cells has not been reported so far.
View Article and Find Full Text PDF