Noninvasive prenatal tests for monogenic diseases (NIPT-SGG) have recently been reported as helpful in early-stage antenatal screening. Our study describes the clinical and genetic features of cases identified by NIPT-SGG. In a cohort pregnancy with abnormal sonograms, affected cases were confirmed by invasive diagnostic tests concurrently, with NIPT-SGG targeting 25 common dominant single-gene diseases.
View Article and Find Full Text PDFOver 60% of single-gene diseases in newborns are autosomal dominant variants. Noninvasive prenatal testing for monogenic conditions (NIPT-SGG) is cost-effective and timesaving, but not widely applied. This study introduces and validates NIPT-SGG in detecting 25 monogenic conditions.
View Article and Find Full Text PDFIn Vietnam, colorectal cancer is one of the top diagnosed cancers, with 5-10% originating from inherited mutations. This study aims to define the mutation spectrum associated with hereditary colorectal cancer syndromes (HCCS) in Vietnam, evaluate the influence of genetic testing on carriers' awareness, and also investigate the barriers in familial testing. Genetic test reports were collected to identify HCCS cases, then cases underwent a survey investigating self-risk and familial-risk awareness, proactive cancer screening, and familial testing barriers.
View Article and Find Full Text PDFJ Matern Fetal Neonatal Med
December 2023
Hemoglobin
July 2022
Mol Genet Genomic Med
July 2022
Identification of tumor-derived mutation (TDM) in liquid biopsies (LB), especially in early-stage patients, faces several challenges, including low variant-allele frequencies, interference by white blood cell (WBC)-derived mutations (WDM), benign somatic mutations and tumor heterogeneity. Here, we addressed the above-mentioned challenges in a cohort of 50 nonmetastatic colorectal cancer patients, via a workflow involving parallel sequencing of paired WBC- and tumor-gDNA. After excluding potential false positive mutations, we detected at least one TDM in LB of 56% (28/50) of patients, with the majority showing low-patient coverage, except for one TDM mapped to that recurred in 30% (15/30) of patients.
View Article and Find Full Text PDFCancer Invest
February 2020
The identification and quantification of actionable mutations are critical for guiding targeted therapy and monitoring drug response in colorectal cancer. Liquid biopsy (LB) based on plasma cell-free DNA analysis has emerged as a noninvasive approach with many clinical advantages over conventional tissue sampling. Here, we developed a LB protocol using ultra-deep massive parallel sequencing and validated its clinical performance for detection and quantification of actionable mutations in three major driver genes ( and ).
View Article and Find Full Text PDFPLoS One
April 2020
The identification and quantification of actionable mutations are of critical importance for effective genotype-directed therapies, prognosis and drug response monitoring in patients with non-small-cell lung cancer (NSCLC). Although tumor tissue biopsy remains the gold standard for diagnosis of NSCLC, the analysis of circulating tumor DNA (ctDNA) in plasma, known as liquid biopsy, has recently emerged as an alternative and noninvasive approach for exploring tumor genetic constitution. In this study, we developed a protocol for liquid biopsy using ultra-deep massively parallel sequencing (MPS) with unique molecular identifier tagging and evaluated its performance for the identification and quantification of tumor-derived mutations from plasma of patients with advanced NSCLC.
View Article and Find Full Text PDFBackground: Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary syndrome characterised by the development of hundreds to thousands of adenomatous colonic polyps during the second decade of life. FAP is caused by germ line mutations in the adenomatous polyposis coli (APC) gene located on chromosome 5q21-22.
Case Presentation: A 36-year-old female was presented with 100-1000 adenomatous colonic polyps, typical of classic FAP symptoms.