Publications by authors named "Thanh-Kieu Huynh"

Background: Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (AMD) is described as abnormal angiogenesis in the retina and the leaking of fluid and blood that generates a huge, dark, blind spot in the center of the visual field, causing severe vision loss in over 90% of patients. Bone marrow-derived endothelial progenitor cells (EPCs) contribute to pathologic angiogenesis. Gene expression profiles downloaded from the eyeIntegration v1.

View Article and Find Full Text PDF

Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity.

View Article and Find Full Text PDF

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

View Article and Find Full Text PDF
Article Synopsis
  • Development of resistance to lapatinib, a treatment for advanced HER2-driven breast cancer, limits its effectiveness over time, necessitating research into its underlying mechanisms.
  • The study reveals that while lapatinib successfully suppresses HER2 and inactivates the Akt pathway, it fails to boost p27 levels, a key player in cell death, due to the upregulation of miR-221.
  • Targeting this resistance mechanism by using the Src inhibitor dasatinib shows promise in reversing miR-221 effects and restoring p27 levels, providing a potential strategy to enhance lapatinib treatment efficacy.
View Article and Find Full Text PDF

Transmembrane serine protease (TMPRSS2) plays an oncogenic role in prostate cancer as the fusion gene with ERG, and has also been demonstrated to be essential for the cellular entry of severe acute respiratory syndrome coronaviruses (SARS-CoV). Thus, targeting TMPRSS2 is a promising strategy for therapies against both prostate cancer and coronavirus infection. Although Nafamostat and Camostat have been identified as TMPRSS2 inhibitors, severe side effects such as cerebral hemorrhage, anaphylactoid reaction, and cardiac arrest shock greatly hamper their clinical use.

View Article and Find Full Text PDF

Although dual EGFR/HER2 tyrosine kinase inhibitor lapatinib has provided effective clinical benefits for HER2-positive breast cancer patients, acquired resistance to this drug remains a major concern. Thus, the development of alternative therapeutic strategies is urgently needed for patients who failed lapatinib treatment. Proteasome inhibitors have been reported to possess high anti-tumor activity to breast cancer cells.

View Article and Find Full Text PDF

Background: Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B.

View Article and Find Full Text PDF