Transmembrane prostate androgen-induced protein (TMEPAI), also known as PMEPA1, is highly expressed in many types of cancer and promotes oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. We previously established TMEPAI-knockout (KO) cells from human triple-negative breast cancer (TNBC) cell lines and found that TMEPAI-KO cells showed reduced tumorigenic abilities.
View Article and Find Full Text PDFThe ErbB3-binding protein 1 (Ebp1) has been reported as either an oncogenic regulator or a tumor suppressor in a variety of cancers. Here, we show that Ebp1 p48, a predominant expression isoform, is highly expressed in the majority of human colon tumor cells compared with normal adjacent tissues and its expression is required for the oncogenic activities of these cells. Depletion of Ebp1 expression in primary colon cancer cells inhibits cell proliferation, colony forming, and invasion in vitro as well as tumor formation in vivo and enhances cell sensitivity to irradiation.
View Article and Find Full Text PDFTMEPAI/PMEPA1 (transmembrane prostate androgen induced-RNA/prostate transmembrane protein, androgen induced 1) is a pro-tumorigenic factor induced by TGF-β signaling and constitutive TMEPAI expression in lung cancer cells depends on activated autocrine TGF-β signaling. Here we demonstrate a novel mechanism of TMEPAI transcriptional co-regulation by EGF signaling. Interestingly, we found that ELK-1, downstream of EGFR/Ras/MAPK pathway, modulates TMEPAI expression.
View Article and Find Full Text PDFTransforming growth factor (TGF)-β signaling is deliberately regulated at multiple steps in its pathway from the extracellular microenvironment to the nucleus. However, how TGF-β signaling is activated or attenuated is not fully understood. We recently identified transmembrane prostate androgen-induced RNA (TMEPAI), which is involved in a negative feedback loop of TGF-β signaling.
View Article and Find Full Text PDFTMEPAI/PMEPA1 is a transmembrane protein that was originally identified as a prostatic RNA, the synthesis of which is induced by testosterone or its derivatives. We have recently identified TMEPAI as a direct target gene of transforming growth factor-β (TGF-β)/Smad signaling that participates in negative feedback control of the duration and intensity of TGF-β/Smad signaling. TMEPAI is constitutively and highly expressed in many types of cancer and is associated with poor prognosis.
View Article and Find Full Text PDF