Neuromorphic computing, which involves the creation of artificial synapses capable of mimicking biological brain activity, has intrigued researchers in the field of artificial intelligence (AI). To advance neuromorphic computing, a highly efficient 2D material-based artificial synapse capable of performing logical and arithmetic operations must be developed. However, fabricating large, uniform films or high-quality structures of 2D materials remains challenging because of their multistep and complex fabrication processes.
View Article and Find Full Text PDFMetallic nanowire-based transparent conductors (MNTCs) are essential to various technologies, including displays, heat-regulating windows, and photo-communication. Hybrid configurations are primarily adopted to design stable, high-functioning MNTCs. Although hybrid MNTCs enhance electrical performance, they often suffer from optical degradation due to losses associated with the hybrid layers.
View Article and Find Full Text PDFOmnidirectional photosensing is crucial in optoelectronic devices, enabling a wide field of view (wFoV) and leveraging potential applications for the Internet of Things in sensors, light fidelity, and photocommunication. The wFoV helps overcome the limitations of line-of-sight communication, and transparent photodetection becomes highly desirable as it enables the capture of optical information from various angles. Therefore, developing a photoelectric device with a 360° wFoV, ultra sensitivity to photons, power generation, and transparency is of utmost importance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
If we can transparently produce energy, we may apply invisible power generators to residential architectures to supply energy without losing visibility. Transparent photovoltaic cells (TPVs) are a transparent solar technology that transmits visible light while absorbing the invisible short wavelengths, such as ultraviolet. Installing TPVs in buildings provides an on-site energy supply platform as a window-embedded power generator or color-matched solar cell installation on a building surface.
View Article and Find Full Text PDFInspired by the brain, future computation depends on creating a neuromorphic device that is energy-efficient for information processing and capable of sensing and learning. The current computation-chip platform is not capable of self-power and neuromorphic functionality; therefore, a need exists for a new platform that provides both. This Perspective illustrates potential transparent photovoltaics as a platform to achieve scalable, multimodal sensory, self-sustainable neural systems (, visual cortex, nociception, and electronic skin).
View Article and Find Full Text PDFMaterials (Basel)
April 2021
Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances.
View Article and Find Full Text PDFBio-inspired electronic devices have significant potential for use in memory devices of the future, including in the context of neuromorphic computing and architecture. This study proposes a transparent heterojunction device for the artificial human visual cortex. Owing to their high transparency, such devices directly react to incoming light to mimic neurological and biological processes in the nervous system.
View Article and Find Full Text PDFSolar-driven hydrogen generation is one of the most promising approaches for building a sustainable energy system. Photovoltaic-assisted photoanodes can help to reduce the overpotential of water splitting in photoelectrochemical (PEC) cells. Transparent photoanodes can improve light-conversion efficiency by absorbing high-energy photons while transmitting lower energy photons to the photocathode for hydrogen production.
View Article and Find Full Text PDFIn this data article, the properties of WS/ZnO type-I heterostructure which corresponds to the research article "Vertically trigonal WS layer embedded heterostructure for enhanced ultraviolet-visible photodetector" (Nguyen et al., 2018) are presented by characteristics of WS layer, diode properties, and thickness dependent photoresponses. The device performances under the effect of rapid thermal processing (RTP) is presented.
View Article and Find Full Text PDFIn this work we utilized the advantage of the photo-induced pyroelectric effect - known as "Pyro-phototronic" - to design a self-powered, ultrafast, transparent ultraviolet (UV, 365 nm) photodetector. The device architecture contains an UV absorbing pyroelectric ZnO layer sandwiched between hole-selective V2O5 and a bottom ITO electrode. In addition, the device shows a high optical transmittance, >70%, in the entire visible region.
View Article and Find Full Text PDF