Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.
View Article and Find Full Text PDFCovalent crosslinking of silk fibroin via native tyrosine residues has been extensively explored; however, while these materials are very promising for biomedical, optical, soft robotics, and sensor applications, their structure and mechanical properties are unstable over time. This instability results in spontaneous silk self-assembly and stiffening over time, a process that is poorly understood. This study investigates the interplay between self-assembly and di-tyrosine bond formation in silk hydrogels photo-crosslinked using ruthenium (Ru) and sodium persulfate (SPS) with visible light.
View Article and Find Full Text PDFThe heart's intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives.
View Article and Find Full Text PDFFlexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human-machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density.
View Article and Find Full Text PDFMinimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Early diagnosis and treatment of diseases in the gastrointestinal (GI) tract including colorectal cancers (CRC) via natural orifices have led to a significant increase in patient survival rates. Most screening procedures utilize image-guided techniques via a conventional endoscope. The cost of conventional endoscopes is substantial, ranging in the tens of thousands of USD or more.
View Article and Find Full Text PDFWork-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight.
View Article and Find Full Text PDFPalpation is a simple but effective method to distinguish tumors from healthy tissues. The development of miniaturized tactile sensors embedded on endoscopic or robotic devices is key to achieving precise palpation diagnosis and subsequent timely treatment. This paper reports on the fabrication and characterization of a novel tactile sensor with mechanical flexibility and optical transparency that can be easily mounted on soft surgical endoscopes and robotics.
View Article and Find Full Text PDFThe advent of soft robots has solved many issues posed by their rigid counterparts, including safer interactions with humans and the capability to work in narrow and complex environments. While much work has been devoted to developing soft actuators and bioinspired mechatronic systems, comparatively little has been done to improve the methods of actuation. Hydraulically soft actuators (HSAs) are emerging candidates to control soft robots due to their fast responses, low noise, and low hysteresis compared to compressible pneumatic ones.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introducing them into the patient's body, which poses several drawbacks such as surface mismatches, structure damage, and high contamination along with tissue injury due to transport and large open-field surgery. In situ bioprinting inside a living body is a potentially transformational solution as the body serves as an excellent bioreactor.
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
Living environments often require high adaptation from biological organisms, such as altering their shape and mechanical properties [...
View Article and Find Full Text PDFFlexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications.
View Article and Find Full Text PDFThe integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices.
View Article and Find Full Text PDFSoft actuators (SAs) have been used in many compliant robotic structure and wearable devices, due to their safe interaction with the wearers. Despite advances, the capability of current SAs is limited by scalability, high hysteresis, and slow responses. In this paper, a new class of soft, scalable, and high-aspect ratio fiber-reinforced hydraulic SAs is introduced.
View Article and Find Full Text PDFWound closure with surgical sutures is a critical challenge for flexible endoscopic surgeries. Substantial efforts have been introduced to develop functional and smart surgical sutures to either monitor wound conditions or ease the complexity of knot tying. Although research interests in smart sutures by soft robotic technologies have emerged for years, it is challenging to develop a soft robotic structure that possesses a similar physical structure as conventional sutures while offering a self-tightening knot or anchor to close the wound.
View Article and Find Full Text PDFResearch on soft artificial muscles (SAMs) is rapidly growing, both in developing new actuation ideas and improving existing structures with multifunctionality. The human body has more than 600 muscles that drive organs and joints to achieve desired functions. Inspired by the human muscles, this article presents a new type of SAM fiber formed from twisting and braiding soft hydraulic filament artificial muscles with high aspect ratio, high strain, and high energy efficiency.
View Article and Find Full Text PDFConformable robotic systems are attractive for applications in which they may actuate structures with large surface areas, provide forces through wearable garments, or enable autonomous robotic systems. We present a new family of soft actuators that we refer to as Fluidic Fabric Muscle Sheets (FFMS). They are composite fabric structures that integrate fluidic transmissions based on arrays of elastic tubes.
View Article and Find Full Text PDFStretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules.
View Article and Find Full Text PDFOverweight and obesity have been identified as a cause of high risk diseases like diabetes and cancer. Although conventional Intragastric Balloons (IGBs) have become an efficient and less invasive method for overweight and obesity treatment, the use of conventional tools such as catheter or endoscope to insert and remove the IGBs from the patient's body causes nausea, vomiting, discomfort, and even gastric mucous damage. To eliminate these drawbacks, we develop a novel magnetic soft capsule device with gas-filled balloon inflation.
View Article and Find Full Text PDFIntra-gastric balloons (IGB) have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient's stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
June 2016
Goal: Mechanical ventilation is required to aid patients with breathing difficulty to breathe more comfortably. A tracheostomy tube inserted through an opening in the patient neck into the trachea is connected to a ventilator for suctioning. Currently, nurses spend millions of person-hours yearly to perform this task.
View Article and Find Full Text PDF