Publications by authors named "Thanh Lan Chu"

In this study, kidney decellularized extracellular matrix (dECM) and alginate (ALG) hybrid injectable hydrogel, with the purpose of delivering progenitor cells for tissue engineering, were prepared by using a physical crosslinking method in a CaCl solution with high porosity for the exchange of nutrition and waste. In addition, the physical appearance and surface morphology of the hydrogel were investigated using optical and scanning electron microscopy, respectively. The functional groups of the dECM/ALG xerogels was examined via Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Individually, Chitosan (C) and Gelatin (G) are increasingly being used for the simulation and testing of surgical procedures. In the present study, at combination of chitosan/gelatin (CG) was optimized and later enriched by the loading decellularized liver extracellular matrix powder (dLECM) prepared from porcine liver, we hypothesized CG-dLECM combination would enhance wound healing and reduce postoperative complications after liver surgery. Varying concentration of dLECM (1, 4, and 8 mg/ml) were loaded into CG, and evaluation was done to get the optimized composition.

View Article and Find Full Text PDF

Free flow hemostatic agents are dominating over non-flowable hemostats due to their ability to cover asymmetrical wound surfaces of any depth and easily remove excess materials with irrigation. The objective of this study was to evaluate the activation of a coagulation system both in vitro and in vivo. We assessed detailed physical characteristics of a microbial transglutaminase (m-TG) crosslinked thrombin (TB) laden Gelatin (Gel) hemostat sealant in vitro and its hemostatic efficacy for controlling bleeding caused by liver trauma in rats as well as its efficacy for organ regeneration after making a critical defect.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) functions as a cellular energy sensor by monitoring the cellular AMP:ATP ratio and plays a central role in cellular and whole-body energy homeostasis. Recent studies have suggested that AMPK also contribute to cell cycle regulation, but its role in this field remains almost elusive. In the present study, we report that AMPKα1 was transiently activated during G/S transition phase in NIH3T3 cells in the absence of any metabolic stress.

View Article and Find Full Text PDF