Publications by authors named "Thanh D Do"

Type 1 diabetes results from the autoimmune destruction of pancreatic insulin-producing β-cells, primarily targeted by autoreactive T cells that recognize insulin B9-23 peptides as antigens. Using drift tube ion mobility spectrometry-mass spectrometry, transmission electron microscopy, and two-dimensional infrared spectroscopy, we characterized mouse insulin 1 B9-23 (Ins1 B9-23), insulin 2 B9-23 (Ins2 B9-23), along with two of their mutants, Ins2 B9-23 Y16A and Ins2 B9-23 C19S. Our findings indicate that Ins1 B9-23 and the Ins2 Y16A mutant exhibit rapid fibril formation, whereas Ins2 B9-23 and the Ins2 C19S mutant show slower fibrillization and a structural rearrangement from globular protofibrils to fibrillar aggregates.

View Article and Find Full Text PDF

The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40.

View Article and Find Full Text PDF

Our study reveals the underlying principles governing the passive membrane permeability in three large methylated macrocyclic peptides (MeMPs): cyclosporine A (CycA), Alisporivir (ALI), and cyclosporine H (CycH). We determine a series of conformers required for robust passive membrane diffusion and those relevant to other functions, such as binding to protein targets or intermediates, in the presence of solvent additives. We investigate the conformational interconversions and establish correlations with the membrane permeability.

View Article and Find Full Text PDF

Exploring the mechanisms underlying the toxicity of amyloid oligomers (AOs) presents a significant opportunity for discovering cures and developing treatments for neurodegenerative diseases. Recently, using a combination of ion mobility spectrometry-mass spectrometry (IMS-MS) and X-ray crystallography (XRC), we showed that the peptide KVKVLWDVIEV, which is the G95W mutant of αB-Crystallin (90-100) and abbreviated as G6W, self-assembles up to a dodecamer that structurally resembles lipid transport proteins. The glycine to tryptophan mutation promotes not only larger oligomers and enhanced cytotoxicity in brain slices than the wild type but also a narrow hydrophobic cavity suitable for fatty acid or phospholipid binding.

View Article and Find Full Text PDF

Beauvericin (BEA) and enniatins (ENN) are cyclic hexadepsipeptide mycotoxins known for their ionophoric activities across cell membranes. While their ability to selectively bind alkali ions to form binary complexes has been studied, their interaction with multivalent metal ions to form higher-order complexes remains less explored. We report the unique characteristics of the 1:2, M:BEA or ENN complexes with monovalent, divalent, and trivalent metal ions.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy of small molecules protonated in a solvent-free environment was successfully demonstrated. The method is referred to as lvent-ree protonation NMR (SoF-NMR). Leveraging matrix-assisted ionization (MAI), we generated protonated species of aniline, 4-chloroaniline, 4-aminobiphenyl, and benzocaine for NMR analysis under mild pressure and temperature conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between cysteine (CYS) forming amyloid-like nanofibrils and its oxidized form, cystine (CTE), which forms hexagonal crystals related to cystinuria, a metabolic disorder.
  • It was found that the formation of cystine crystals is directly linked to the previous assembly of cysteine fibrils, indicating that the two processes are interconnected.
  • The research suggests using thiol-containing drugs and EGCG to potentially stop crystal formation in cystinuria by targeting the initial fibril formation stage instead of dealing with the crystals later.
View Article and Find Full Text PDF

Posttranslational modifications (PTMs) play vital roles in cellular homeostasis and are implicated in various pathological conditions. This work uses two ion mobility spectrometry-mass spectrometry (IMS-MS) modalities, drift-tube IMS (DT-IMS) and trapped IMS (TIMS), to characterize three important nonenzymatic PTMs that induce no mass loss: l/d isomerization, aspartate/isoaspartate isomerization, and / proline isomerization. These PTMs are assessed in a single peptide system, the recently discovered pleurin peptides, Plrn2, from .

View Article and Find Full Text PDF

While soluble forms of amyloid-β (Aβ) and Tau work together to drive healthy neurons into a disease state, how their interaction may control the prion-like propagation and neurotoxicity of Tau is not fully understood. The cross-linking via disulfide bond formation is crucial for Tau oligomers to obtain stable conformers and spread between cells. This work thus focuses on how Aβ regulates this critical process.

View Article and Find Full Text PDF

We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1.

View Article and Find Full Text PDF

causes severe invasive candidiasis. infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear.

View Article and Find Full Text PDF

An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel -amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks.

View Article and Find Full Text PDF

Gas-phase ion-mobility spectrometry provides a unique platform to study the effect of mobile charge(s) or charge location on collisional cross section and ion separation. Here, we evaluate the effects of cation/anion adduction in a series of xylene and pyridyl macrocycles that contain ureas and thioureas. We explore how zinc binding led to unexpected deprotonation of the thiourea macrocyclic host in positive polarity ionization and subsequently how charge isomerism due to cation (zinc metal) and anion (chloride counterion) adduction or proton competition among acceptors can affect the measured collisional cross sections in helium and nitrogen buffer gases.

View Article and Find Full Text PDF

Atomic structures of amyloid oligomers that capture the neurodegenerative disease pathology are essential to understand disease-state causes and finding cures. Here we investigate the G6W mutation of the cytotoxic, hexameric amyloid model KV11. The mutation results into an asymmetric dodecamer composed of a pair of 30° twisted antiparallel β-sheets.

View Article and Find Full Text PDF

Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization.

View Article and Find Full Text PDF

High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive.

View Article and Find Full Text PDF

Falling outside of Lipinski's rule of five, macrocyclic drugs have accessed unique binding sites of their target receptors unreachable by traditional small molecules. Cyclosporin(e) A (CycA), an extensively studied macrocyclic natural product, is an immunosuppressant with undesirable side effects such as electrolytic imbalances. In this work, a comprehensive view on the conformational landscape of CycA, its interactions with Ca, and host-guest interactions with cyclophilin A (CypA) is reported through exhaustive analyses that combine ion-mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR) spectroscopy, distance-geometry modeling, and NMR-driven molecular dynamics.

View Article and Find Full Text PDF

Our knowledge of amyloid formation and cytotoxicity originating from self-assembly of α-helical peptides is incomplete. PSMα3 is the only system where high-resolution X-ray crystallography and toxicity data are available. Oligomers of multiple α-helical monomers are less stable than those of β-strands, partially due to the lack of a consistent hydrogen-bonding network.

View Article and Find Full Text PDF

We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host-guest complexes of m-xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn to form a dimer complex with the cation in an off-axis sandwich structure having the Zn-S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size.

View Article and Find Full Text PDF

Macrocycles provide intricate shape manifolds that leverage the depth of the modern organic chemistry toolbox. Novel chemistry can be introduced via new bond types and unique torsional angles inaccessible by traditional small molecules and biomolecules. In this work, we investigate the conformational space of a class of biscationic macrocycles in protic and aprotic solvents using a combination of ion-mobility spectrometry mass spectrometry, distance geometry modeling, and quantum mechanical calculations.

View Article and Find Full Text PDF

Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a salient feature of amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder affecting over 200 000 people worldwide. The protein undergoes both functional and pathogenic aggregation; the latter is irreversible and hypothesized to produce soluble oligomers that are toxic to neurons in addition to inclusions made of stable fibrous deposits. Despite progress made toward identifying disease-related proteins, the underlying pathogenic mechanism associated with these toxic oligomers remains elusive.

View Article and Find Full Text PDF

Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution.

View Article and Find Full Text PDF

Proteins and peptides in nature are almost exclusively made from l-amino acids, and this is even more absolute in the metazoan. With the advent of modern bioanalytical techniques, however, previously unappreciated roles for d-amino acids in biological processes have been revealed. Over 30 d-amino acid containing peptides (DAACPs) have been discovered in animals where at least one l-residue has been isomerized to the d-form via an enzyme-catalyzed process.

View Article and Find Full Text PDF

The mammalian dorsal root ganglia (DRG) are located on the dorsal roots of the spinal nerves and contain cell bodies of primary sensory neurons. DRG cells have been classified into subpopulations based on their size, morphology, intracellular markers, response to stimuli, and neuropeptides. To understand the connections between DRG chemical heterogeneity and cellular function, we performed optically guided, high-throughput single cell profiling using sequential matrix-assisted laser desorption/ionization mass spectrometry (MS) to detect lipids, peptides, and several proteins in individual DRG cells.

View Article and Find Full Text PDF