Publications by authors named "Thando Ndlovu"

The increasing reports of multidrug-resistant have emerged as a public health concern, raising questions about the potential routes for the evolution and dissemination of the pathogenic into environmental reservoirs. Potential drivers of the increased incidence of antimicrobial-resistant environmental include the eminent global climatic variations as a direct or indirect effect of human activities. The ability of microorganisms to adapt and grow at an exponential rate facilitates the distribution of environmental strains with acquired resistant mutations into water systems, vegetation, and soil which are major intersection points with animals and humans.

View Article and Find Full Text PDF

The genotypic and phenotypic characteristics and antibiotic resistance (antibiogram) profiles of clinical (n = 13) and environmental (n = 7) Acinetobacter baumannii isolates were compared. Based on the Repetitive Extragenic Palindromic Sequence-based PCR (REP-PCR) analysis, the clinical and environmental A. baumannii isolates shared low genetic relatedness (∼60%).

View Article and Find Full Text PDF

The survival, proliferation, and epidemic spread of () in hospital settings is associated with several characteristics, including resistance to many commercially available antibiotics as well as the expression of multiple virulence mechanisms. This severely limits therapeutic options, with increased mortality and morbidity rates recorded worldwide. The World Health Organisation, thus, recognises as one of the critical pathogens that need to be prioritised for the development of new antibiotics or treatment.

View Article and Find Full Text PDF

Nine morphologically distinct halophilic yeasts were isolated from Makgadikgadi and Sua pans, as pristine and extreme environments in Botswana. Screening for biosurfactant production showed that Rhodotorula mucilaginosa SP6 and Debaryomyces hansenii MK9 exhibited the highest biosurfactant activity using Xanthocercis zambesiaca seed powder as a novel and alternative inexpensive carbon substrate. Chemical characterization of the purified biosurfactants by Fourier Transform Infra-Red spectroscopy suggested that the biosurfactant from R.

View Article and Find Full Text PDF

An integrated approach that combines reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry, untargeted ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS) and molecular networking (using the Global Natural Products Social molecular network platform) was used to elucidate the metabolic profiles and chemical structures of the secondary metabolites produced by pigmented (P1) and non-pigmented (NP1) () strains. Tandem mass spectrometry-based molecular networking guided the structural elucidation of 18 compounds for the P1 strain (including 6 serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using the MS fragmentation profiles. The serratamolide homologues were comprised of a peptide moiety of two L-serine residues (cyclic or open-ring) linked to two fatty acid chains (lengths of C, C, or C).

View Article and Find Full Text PDF

Background: The antimicrobial resistance of clinical, environmental and control strains of the WHO "Priority 1: Critical group" organisms, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa to various classes of antibiotics, colistin and surfactin (biosurfactant) was determined.

Methods: Acinetobacter baumannii was isolated from environmental samples and antibiotic resistance profiling was performed to classify the test organisms [A. baumannii (n = 6), P.

View Article and Find Full Text PDF

The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing.

View Article and Find Full Text PDF

The quantitative and qualitative effect of water immiscible and miscible carbon-rich substrates on the production of biosurfactants, surfactin and rhamnolipids, by Bacillus amyloliquefaciens ST34 and Pseudomonas aeruginosa ST5, respectively, was analysed. A small-scale high throughput 96 deep-well micro-culture method was utilised to cultivate the two strains in mineral salt medium (MSM) supplemented with the water miscible (glucose, glycerol, fructose and sucrose) and water immiscible carbon sources (diesel, kerosene and sunflower oil) under the same growth conditions. The biosurfactants produced by the two strains were isolated by acid precipitation followed by an organic solvent extraction.

View Article and Find Full Text PDF

Biosurfactants are unique secondary metabolites, synthesised non-ribosomally by certain bacteria, fungi and yeast, with their most promising applications as antimicrobial agents and surfactants in the medical and food industries. Naturally produced glycolipids and lipopeptides are found as a mixture of congeners, which increases their antimicrobial potency. Sensitive analysis techniques, such as liquid chromatography coupled to mass spectrometry, enable the fingerprinting of different biosurfactant congeners within a naturally produced crude extract.

View Article and Find Full Text PDF

Background: Numerous pathogens and opportunistic pathogens have been detected in harvested rainwater. Developing countries, in particular, require time- and cost-effective treatment strategies to improve the quality of this water source. The primary aim of the current study was thus to compare solar pasteurization (SOPAS; 70 to 79 °C; 80 to 89 °C; and ≥90 °C) to solar disinfection (SODIS; 6 and 8 hrs) for their efficiency in reducing the level of microbial contamination in harvested rainwater.

View Article and Find Full Text PDF

The distribution and diversity of culturable biosurfactant-producing bacteria were investigated in a wastewater treatment plant (WWTP) using the Shannon and Simpson's indices. Twenty wastewater samples were analysed, and from 667 isolates obtained, 32 were classified as biosurfactant producers as they reduced the surface tension of the culture medium (71.1 mN/m), with the lowest value of 32.

View Article and Find Full Text PDF
Article Synopsis
  • McNemar's test and Pearson Chi-square analyzed virulent E. coli genes in river water, revealing significant gene presence percentages across two South African rivers.
  • Conventional and real-time multiplex PCR assays confirmed the presence of various E. coli genes, with inconsistencies noted between the two methods for some genes.
  • The study emphasizes the need for early detection and further analysis to assess health risks associated with virulent E. coli in water sources.
View Article and Find Full Text PDF