Introduction: Studying diseased human tissues offers better insights into the intricate interactions between pathogens and the human host. In conditions such as HIV and cancers, where diseases primarily manifest in tissues, peripheral blood studies are limited in providing a thorough understanding of disease processes and localized immune responses.
Methods: We describe a study designed to obtain excisional lymph nodes from volunteers for HIV reservoir studies.
Background: The informed consent process is an important step in conducting ethical clinical trials, as it ensures that research participants are aware of their rights and responsibilities in clinical trials. This study explored participants' perceptions, experiences and the factors motivating their participation in a COVID-19 vaccine trial in South Africa.
Methods: This descriptive qualitative study was conducted among twenty-five adult participants (18 to 64 years old) who participated in a COVID-19 vaccine trial in South Africa.
We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.
View Article and Find Full Text PDFBackground: Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants.
View Article and Find Full Text PDFBackground: We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.
View Article and Find Full Text PDFIn some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools.
View Article and Find Full Text PDFHIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond.
View Article and Find Full Text PDFBackground: HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated.
Results: Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues.
CD8+ T cells play an important role in HIV control. However, in human lymph nodes (LNs), only a small subset of CD8+ T cells express CXCR5, the chemokine receptor required for cell migration into B-cell follicles, which are major sanctuaries for HIV persistence in individuals on therapy. Here, we investigate the impact of HIV infection on follicular CD8+ T cell (fCD8) frequencies, trafficking patterns, and CXCR5 regulation.
View Article and Find Full Text PDFBackground: High rates of bacterial vaginosis (BV) have been described in nonpregnant South African women. Studies of BV in South African pregnant women are sparse. Diagnosis and prompt treatment of BV in pregnancy are expected to have a positive impact on pregnancy outcomes and HIV prevention.
View Article and Find Full Text PDFSustained viremia after acute HIV infection is associated with profound CD4 T cell loss and exhaustion of HIV-specific CD8 T cell responses. To determine the impact of combination antiretroviral therapy (cART) on these processes, we examined the evolution of immune responses in acutely infected individuals initiating treatment before peak viremia. Immediate treatment of Fiebig stages I and II infection led to a rapid decline in viral load and diminished magnitude of HIV-specific (tetramer) CD8 T cell responses compared to untreated donors.
View Article and Find Full Text PDFSome closely related human leukocyte antigen (HLA) alleles are associated with variable clinical outcomes following HIV-1 infection despite presenting the same viral epitopes. Mechanisms underlying these differences remain unclear but may be due to intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we examine CD8 T cell responses against the immunodominant HIV-1 Gag epitope TL9 (TPQDLNTML) in the context of the protective allele B*81:01 and the less protective allele B*42:01.
View Article and Find Full Text PDFCD8(+) T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8(+) T cell response, with limited bystander activation of non-HIV memory CD8(+) T cells.
View Article and Find Full Text PDF