Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2023
The neutral rhenium(I)-biimidazole complex [Re(CO)(biimH)(1,4-NVP)] (1) was designed and synthesized by a one-pot reaction of Re(CO), 2,2'-biimidazole (biimH) and 4-(1-naphthylvinyl)pyridine (1,4-NVP). The structure of 1 was characterized by various spectroscopic techniques including IR, H NMR, FAB-MS, and elemental analysis and further confirmed by a single-crystal X-ray diffraction analysis. The mononuclear complex 1, a relatively simple structure with an octahedral geometry, is comprised of facial-arranged carbonyl groups, one chelated biimH monoanion, and one 1,4-NVP.
View Article and Find Full Text PDFThe self-assembly of tetrarhenium metallacycles [{Re(CO)}(μ-dhaq)(μ-N-N)] (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)}(μ-thaq)(μ-N-N)] (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation.
View Article and Find Full Text PDFA rare -generated mononuclear rhenium complex [Re(bpt)(CO)(NH)] (1, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazolate) can be used as a "turn-on" luminescent probe for selectively sensing L-histidine against other amino acids. Compound 1 was prepared by reacting Re(CO), 2-cyanopyridine and hydrazine with an formed bpt ligand through cyclization C-N and N-N couplings with its single-side chelating mode arrayed with respect to the Re center. Compound 1 was highly stable and showed a green light MLCT emission in DMF solution at 507 nm upon excitation at 360 nm.
View Article and Find Full Text PDFThe extraordinary characteristic features of metal-organic frameworks (MOFs) make them applicable for use in a variety of fields but their conductivity in microelectronics over a wide relative humidity (RH) range has not been extensively explored. To achieve good performance, MOFs must be stable in water, i. e.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2021
We have designed and synthesized a novel pyrene-naphthalene sulphonyl conjugate, 1-((1Z)-(4-((Z)-4-(pyrene-1-yl)methyleneamino)phenylsulfonyl)phenylimino)methyl)naphthalene-2-ol (PSN) through a facile two-step reactions. It was characterized by various spectral techniques. Fluorescence spectral studies showed that compound PSN featured fluorescence enhancement upon increasing the water content in THF.
View Article and Find Full Text PDFCoronaviruses (CoVs) are enveloped viruses with particle-like characteristics and a diameter of 60-140 nm, positively charged, and single-stranded RNA genomes, which caused a major outbreak of human fatal pneumonia in the beginning of the 21st century. COVID-19 is currently considered a continuous potential pandemic threat across the globe. Therefore, considerable efforts have been made to develop innovative methods and technologies for suppressing the spread of viruses as well as inactivating the viruses but COVID-19 vaccines are still in the development phase.
View Article and Find Full Text PDFThe inhibition of platelet activation is considered a potential therapeutic strategy for the treatment of arterial thrombotic diseases; therefore, maintaining platelets in their inactive state has garnered much attention. In recent years, nanoparticles have emerged as important players in modern medicine, but potential interactions between them and platelets remain to be extensively investigated. Herein, we synthesized a new type of carbon dot (CDOT) nanoparticle and investigated its potential as a new antiplatelet agent.
View Article and Find Full Text PDFThe present study involves the synthesis, characterization, and catalytic application of ruthenium nanoparticles (Ru NPs) supported on plastic-derived carbons (PDCs) synthesized from plastic wastes (soft drink bottles) as an alternative carbon source. PDCs have been further activated with CO and characterized by various analytical techniques. The catalytic activity of Ru@PDC for the reduction of potassium hexacyanoferrate(III), (K[Fe(CN)]), and new fuchsin (NF) dye by NaBH was performed under mild conditions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2019
The interaction of two neutral alkoxy bridged binuclear rhenium(I) complexes, 1 and 2 [{Re(CO)(1,4-NVP)}(μ-OR)] (1, R = CH; 2, R = CH; 1,4-NVP = 4-(1-naphthylvinyl)pyridine] with polycyclic aromatic hydrocarbons (PAH) is investigated. UV-vis absorption, emission, H NMR spectral titrations, TCSPC lifetime studies and DFT theoretical calculations were carried out to examine the binding responses of complexes 1 and 2 with various PAHs such as pyrene, naphthalene, anthracene and phenanthrene. The UV-Vis absorption spectra showed an increase in absorbance of the metal-to ligand charge-transfer (MLCT) and ligand centered (LC) bands upon addition of various PAH molecules to 1 and 2, whereas the emission behavior was found to show emission quenching, which might occur through energy transfer pathway.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a noninvasive medical technology that has been applied in cancer treatment where it is accessible by direct or endoscope-assisted light irradiation. To lower phototoxicity and increase tissue penetration depth of light, great effort has been focused on developing new sensitizers that can utilize red or near-infrared (NIR) light for the past decades. Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique property to transduce NIR excitation light to UV-vis emission efficiently.
View Article and Find Full Text PDFMolecular mechanisms and pathological features of p-Cresyl sulfate (PCS)-induced uremic lung injury (ULI) in chronic kidney disease (CKD) remain unclear. We analyzed pleural effusions (PE) from CKD and non-CKD patients for uremic toxins, reactive oxygen species (ROS), and chemotactic cytokines. Correlations between PE biomarkers and serum creatinine were also studied.
View Article and Find Full Text PDFObjective: Tobacco smoking is one of the leading causes of preventable premature death worldwide. Adolescence is a common period at which most of the established smokers start experimenting and smoking. The aim of the study was to determine the prevalence of susceptibility to cigarette smoking and associated factors among high school students in western Ethiopia.
View Article and Find Full Text PDFThree anthracene-based Schiff base complexes, R1-R3 (R1 = (E)-N´-((anthracen-10-yl)methylene)benzohydrazide; R2 = (E)-1-((anthracen-10-yl)methylene)-4-phenylsemicarbazide; and R3 = (E)-1-((anthracen-10-yl)methylene)-4-phenylthiosemicarbazide) were synthesized from 9-anthracenecarboxaldehyde, benzohydrazide, 4-phenylsemicarbazide and 4-phenylthiosemi-carbazide respectively, and characterized by various spectral techniques. The absorption spectral characteristics of R1-R3 were bathochromically tuned to the visible region by extending the π conjugation. These target compounds were weakly fluorescent in tetrahydrofuran (THF) solution because of rapid isomerization of the C=N double bond in the excited state.
View Article and Find Full Text PDFThe detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics.
View Article and Find Full Text PDFUpconversion nanoparticle (UCNP)-mediated photoactivation is a new approach to remotely control bioeffectors with much less phototoxicity and with deeper tissue penetration. However, the existing instrumentation on the market is not readily compatible with upconversion application. Therefore, modifying the commercially available instrument is essential for this research.
View Article and Find Full Text PDFRhenium nanoparticles (ReNPs) supported on ordered mesoporous carbon (OMC) as a catalyst (Re/OMC) through a solvent-evaporation induced self-assembly (ELSA) method were prepared. The synthesized heterogonous catalyst was fully characterized using X-ray diffraction, field emission transmission electron microscopy, N sorption, metal dispersion, thermogravimetric analysis, Raman, Fourier-transform infrared, and X-ray photon spectroscopies. In addition, the catalyst was applied to reduce the aromatic nitro compounds (ANCs) for the first time in aqueous media and the reactions were monitored by following the intensity changes in the UV-vis absorption spectra with respect to time.
View Article and Find Full Text PDFPhotoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution.
View Article and Find Full Text PDFAlkoxy bridged binuclear rhenium(I) complexes are used as a probe for the selective and sensitive detection of aggregation of β-amyloid fibrils that are consorted with Alzheimer's disease (AD). The strong binding of the complexes is affirmed by the fluorescence enhancement and calculated binding constant value in the order of 10(5)M(-1) is obtained from the Scatchard plots. The binding of β-amyloid can be attributed to π-π stacking interaction of naphthalene moiety present in rhenium(I) complexes, and it is supported by docking studies.
View Article and Find Full Text PDFThe aggregation-induced emission enhancement (AIEE) characteristics of the two alkoxy-bridged binuclear Re(I) complexes [{Re(CO)3(1,4-NVP)}2(μ2-OR)2] (1, R = C4H9; 2, C10H21) bearing a long alkyl chain with 4-(1-naphthylvinyl)pyridine (1,4-NVP) ligand are illustrated. These complexes in CH2Cl2 (good solvent) are weakly luminescent, but their intensity increased enormously by almost 500 times by the addition of poor solvent (CH3CN) due to aggregation. By tracking this process via UV-vis absorption and emission spectral and TEM techniques, the enhanced emission is attributed to the formation of nanoaggregates.
View Article and Find Full Text PDFSelf-assembled metallacycles offer structural diversity and interesting properties based on their unique frameworks and host-guest chemistry. As a result, the design and synthesis of these materials has attracted significant research interest. This Account describes our comprehensive investigations of an effective orthogonal-bonding approach for the self-assembly of neutral Re-based metallacycles.
View Article and Find Full Text PDFNew concepts on the design and synthesis of crystalline metal-organic frameworks (MOFs) have made them a subject of considerable interest in the growing field of materials science. By creating larger cavity sizes by a nearly infinite combination of metal nodes and organic linkers, many innovative characteristics of microporous MOFs have been revealed. The primary goal of this perspective article is to highlight the frontiers in the development of giant MOFs that are deliberately constructed from metallated or metal-free bulky scaffolds.
View Article and Find Full Text PDFSelf-assembled, chair-shaped dirhenium(I) macrocyclic compounds featuring the two different bis-chelating quinone dianions (1, L = dhnq(2-); 2, L = dhaq(2-); H(2)dhnq = 6,11-dihydroxy-5,12-naphthacenedione; H(2)dhaq = 1,4-dihydroxy-9,10-anthraquinone) that interface with two fac-Re(CO)(3) cores and a ditopic semirigid N-donor 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)naphthalene (L' = p-NBimM) ligand coordinated to the remaining orthogonal site were prepared in high yields. Their structures were confirmed by single-crystal X-ray diffraction analysis. Electrochemical assessments, using cyclic voltammetry (CV) and UV-vis-NIR spectroelectrochemistry (SEC), revealed the existence of two well-separated, single-electron quinone ligand-centered, reversibly accessible 0, -1, and -2 redox states.
View Article and Find Full Text PDFWe report on a series of new self-assembled cyclometalated dirhenium(I) metallacyclic complexes via an unprecedented rhenium-mediated C-H bond activation and the relationship between their structures and luminescence properties.
View Article and Find Full Text PDF