The aim of this study was to develop a novel deep learning (DL) model without requiring large-annotated training datasets for detecting pancreatic cancer (PC) using computed tomography (CT) images. This retrospective diagnostic study was conducted using CT images collected from 2004 and 2019 from 4287 patients diagnosed with PC. We proposed a self-supervised learning algorithm (pseudo-lesion segmentation (PS)) for PC classification, which was trained with and without PS and validated on randomly divided training and validation sets.
View Article and Find Full Text PDFRecently, transformer-based architectures have been shown to outperform classic convolutional architectures and have rapidly been established as state-of-the-art models for many medical vision tasks. Their superior performance can be explained by their ability to capture long-range dependencies of their multi-head self-attention mechanism. However, they tend to overfit on small- or even medium-sized datasets because of their weak inductive bias.
View Article and Find Full Text PDFDeep convolutional networks have been developed to detect prohibited items for automated inspection of X-ray screening systems in the transport security system. To our knowledge, the existing frameworks were developed to recognize threats using only baggage security X-ray scans. Therefore, the detection accuracy in other domains of security X-ray scans, such as cargo X-ray scans, cannot be ensured.
View Article and Find Full Text PDFSeveral state-of-the-art object detectors have demonstrated outstanding performances by optimizing feature representation through modification of the backbone architecture and exploitation of a feature pyramid. To determine the effectiveness of this approach, we explore the modification of object detectors' backbone and feature pyramid by utilizing Neural Architecture Search (NAS) and Capsule Network. We introduce two modules, namely, NAS-gate convolutional module and Capsule Attention module.
View Article and Find Full Text PDF