This study introduces a Multi-Stage Automated Classification (MSTAC) system for COVID-19 chest X-ray (CXR) images, utilizing stacked Convolutional Neural Network (CNN) models. Suspected COVID-19 patients often undergo CXR imaging, making it valuable for disease classification. The study collected CXR images from public datasets and aimed to differentiate between COVID-19, non-COVID-19, and healthy cases.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has raised global concern, with moderate to severe cases displaying lung inflammation and respiratory failure. Chest x-ray (CXR) imaging is crucial for diagnosis and is usually interpreted by experienced medical specialists. Machine learning has been applied with acceptable accuracy, but computational efficiency has received less attention.
View Article and Find Full Text PDF