Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity.
View Article and Find Full Text PDFMetabolic dysfunctions, such as hyperglycemia and insulin resistance, have been associated to cognitive impairment and dementia regardless of advanced age, although the underlying mechanisms are still elusive. Thus, this study investigates the deleterious effects of metabolic syndrome (MetS) induced by long-term exposure to a high-sucrose diet on motor and cognitive functions of male adult rats and its relationship with hippocampal endoplasmic reticulum (ER) stress. Weaned Wistar male rats were fed a high-sucrose diet until adulthood (HSD; 6 months old) and compared to both age-matched (CTR; 6 months old) and middle-aged chow-fed rats (OLD; 20 months old).
View Article and Find Full Text PDFBackground: Reperfusion syndrome after carotid endarterectomy is a complication associated with cerebrovascular self-regulation in a chronically hypoperfused cerebral hemisphere, leading to severe neurological damage. Vitamin C is an important antioxidant in brain metabolism that has shown some neuroprotective actions.
Objective: To investigate the potential effects of vitamin C on cerebral reperfusion in comparison with placebo (saline) in rats.
Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries.
View Article and Find Full Text PDF