Publications by authors named "Thamires Quadros Froes"

Tuberculosis (TB) is a leading cause of death worldwide. TB represents a serious public health threat, and it is characterized by high transmission rates, prevalence in impoverished regions, and high co-infection rates with HIV. Moreover, the serious side effects of long-term treatment that decrease patient adherence, and the emergence of multi-resistant strains of Mycobacterium tuberculosis, the causing agent of TBs, pose several challenges for its eradication.

View Article and Find Full Text PDF

Background: Dihydroorotate dehydrogenase (DHODH) has long been recognized as an important drug target for proliferative and parasitic diseases, including compounds that exhibit trypanocidal action and broad-spectrum antiviral activity. Despite numerous and successful efforts in structural and functional characterization of DHODHs, as well as in the development of inhibitors, DHODH hot spots remain largely unmapped and underexplored.

Objective: This review describes the tools that are currently available for the identification and characterization of hot spots in protein structures and how freely available webservers can be exploited to predict DHODH hot spots.

View Article and Find Full Text PDF

Assessment of target druggability guided by search and characterization of hot spots is a pivotal step in early stages of drug-discovery. The raw output of FTMap provides the data to perform this task, but it relies on manual intervention to properly combine different sets of consensus sites, therefore allowing identification of hot spots and evaluation of strength, shape and distance among them. Thus, the user's previous experience on the target and the software has a direct impact on how data generated by FTMap server can be explored.

View Article and Find Full Text PDF

The thiazolidinone ring is found in compounds that have widespan biology activity and there is mechanism-based evidence that compounds bearing this moiety inhibit PhzS (PzhS), a key enzyme in the biosynthesis of the virulence factor named pyocyanin. Ten novel thiazolidinone derivatives were synthesised and screened against PhzS, using two orthogonal assays. The biological results provided by these and 28 other compounds, whose synthesis had been described, suggest that the dihydroquinazoline ring, found in the previous hit (- Kd = 18 µM and LE = 0.

View Article and Find Full Text PDF

Background: Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the terminal step of prostaglandin E2 (PGE2) production, which plays an important role in the regulation of febrile response. In our previous work, ligand-based pharmacophore models, built with mPGES-1 inhibitors, were employed to identify a novel series of compounds that reduce the febrile response in rats.

Objectives: The study aimed to evaluate the mechanism of action of the most active compound (1).

View Article and Find Full Text PDF

Coumarins exhibit a wide variety of biological effects, including activities in the cardiovascular system and the aim of this study was to evaluate the vascular therapeutic potential of 7-Hydroxicoumarin (7-HC). The vascular effects induced by 7-HC (0.001 μM-300 μM), were investigated by in vitro approaches using isometric tension measurements in rat superior mesenteric arteries and by in silico assays using Ligand-based analysis.

View Article and Find Full Text PDF

Although bacterial resistance is a growing concern worldwide, the development of antibacterial drugs has been steadily decreasing. One alternative to fight this issue relies on reducing the bacteria virulence without killing it. PhzS plays a pivotal role in pyocyanin production in .

View Article and Find Full Text PDF

Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds.

View Article and Find Full Text PDF

Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood.

View Article and Find Full Text PDF

Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once is auxotrophic for folates.

View Article and Find Full Text PDF

Antimicrobial Resistance (AMR) is a serious problem for the humans since it threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi. One way around this problem is to act on the virulence factors, produced by bacteria, which increase their infection effectiveness. In view of these facts, new coumarin derivatives were synthesized and evaluated for their anti-virulence biological activity towards Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Despite the fact that Leishmania ssp are pteridine auxotrophs, Dihydrofolate Reductase-Thymidylate Synthase (DHFR-TS) inhibitors are ineffective against Leishmania major. On the other hand Pteridine Reductase 1 (PTR1) inhibitors proved to be lethal to the parasite. Aiming at identifying hits that lie outside the chemical space of known PTR1 inhibitors, pharmacophore models that differentiate true-binders from decoys and explain the structure-activity relationships of known inhibitors were employed to virtually screen the lead-like subset of ZINC database.

View Article and Find Full Text PDF

Due to the absence of safety of the antipyretics to patients with cardiovascular dysfunction, new targets to treat inflammation have been pursued. mPGES-1 is a promising target because its inhibition would not cause the side-effects related to COX inhibition. To identify novel inhibitors of mPGES-1, we developed a ligand-based pharmacophore model that differentiates true inhibitors from decoys and enlightens the structure-activity relationships for known mPGES-1 inhibitors.

View Article and Find Full Text PDF

Leishmania major, as other protozoan parasites, plague human kind since pre-historic times but it remains a worldwide ailment for which the therapeutic arsenal remains scarce. Although L. major is pteridine- and purine-auxotroph, well-established folate biosynthesis inhibitors, such as methotrexate, have poor effect over the parasite survival.

View Article and Find Full Text PDF