Publications by authors named "Thambithurai D"

Article Synopsis
  • Fishing-induced evolution (FIE) poses risks to fish populations by disrupting their ecology, resilience, and economic value, influenced by environmental factors that have largely been ignored.
  • The authors introduce a "fishing selection continuum," illustrating how selection pressure can vary from rigid to flexible based on specific examples of FIE mechanisms.
  • They propose using fishery reaction norms to better understand these dynamics and advocate for a comprehensive approach to studying FIE that takes environmental conditions into account.
View Article and Find Full Text PDF

The Atlantic bluefin tuna (ABFT) is a highly prized species of large pelagic fish. Studies of their environmental physiology may improve understanding and management of their populations, but this is difficult for mature adults because of their large size. Biologging of heart rate holds promise in investigating physiological responses to environmental conditions in free-swimming fishes but it is very challenging to anesthetize large ABFT for invasive surgery to place a tag in the body cavity near to the heart.

View Article and Find Full Text PDF

Commercial fishery harvest is a powerful evolutionary agent, but we know little about whether environmental stressors affect harvest-associated selection. We test how parasite infection relates to trapping vulnerability through selective processes underlying capture. We used fish naturally infected with parasites, including trematodes causing black spots under fish skin.

View Article and Find Full Text PDF

There are strong signals that the selection forces favouring the expression of long-distance sea migration by Atlantic salmon (Salmo salar) are changing. Unlike many other behavioural traits, the costs of migration are incurred before any fitness benefits become apparent to the migrant. The expression of this behaviour has thus been shaped by selection forces over multiple generations and cannot respond to short interval (within a single generation) environmental change as many other behavioural traits can.

View Article and Find Full Text PDF

Commercial fishery harvest can influence the evolution of wild fish populations. Our knowledge of selection on morphology is however limited, with most previous studies focusing on body size, age, and maturation. Within species, variation in morphology can influence locomotor ability, possibly making some individuals more vulnerable to capture by fishing gears.

View Article and Find Full Text PDF

In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs.

View Article and Find Full Text PDF

Lay summary Selective harvest of wild organisms by humans can influence the evolution of plants and animals, and fishing is recognized as a particularly strong driver of this process. Importantly, these effects occur alongside environmental change. Here we show that aquatic hypoxia can alter which individuals within a fish population are vulnerable to capture by trawling, potentially altering the selection and evolutionary effects stemming from commercial fisheries.

View Article and Find Full Text PDF

Impacts of fisheries-induced evolution may extend beyond life history traits to more cryptic aspects of biology, such as behaviour and physiology. Understanding roles of physiological traits in determining individual susceptibility to capture in fishing gears and how these mechanisms change across contexts is essential to evaluate the capacity of commercial fisheries to elicit phenotypic change in exploited populations. Previous work has shown that metabolic traits related to anaerobic swimming may determine individual susceptibility to capture in trawls, with fish exhibiting higher anaerobic performance more likely to evade capture.

View Article and Find Full Text PDF

Group living is widespread among animals and has a range of positive effects on individual foraging and predator avoidance. For fishes, capture by humans constitutes a major source of mortality, and the ecological effects of group living could carry-over to harvest scenarios if fish are more likely to interact with fishing gears when in social groups. Furthermore, individual metabolic rate can affect both foraging requirements and social behaviors, and could, therefore, have an additional influence on which fish are most vulnerable to capture by fishing.

View Article and Find Full Text PDF

There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored.

View Article and Find Full Text PDF

Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity.

View Article and Find Full Text PDF