Publications by authors named "Thamara Laredo"

Ferroelectric bio-based materials with a high water content (≈90 wt %) were not previously developed. Here, we develop hydrogels containing ≈90 wt % water, amino acids (lysine and arginine) and oleic acid. The NH and CH groups of lysine hydrogen bond water, as shown by attenuated total reflectance-Fourier transform infrared spectroscopy, yielding electrically conductive solutions.

View Article and Find Full Text PDF

Rapid swelling, high amylopectin starches including Thermally Inhibited (TI), Chemically Modified (CM), and Granular Cold- Swelling (GCS) were assessed for their supporting matrix forming potential and properties. Starches displayed identical calorimetric profiles with no endothermic events, and completely amorphous structure as judged by powder X-ray diffraction. However, they each provided different textural attributes.

View Article and Find Full Text PDF

Langmuir-Blodgett and Langmuir-Schaeffer methods were employed to deposit a mixed bilayer consisting of 90% of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 10% of gramicidin (GD), a short 15 residue ion channel forming peptide, onto a Au(111) electrode surface. This architecture allowed us to investigate the effect of the electrostatic potential applied to the electrode on the orientation and conformation of DMPC molecules in the bilayer containing the ion channel. The charge density data were determined from chronocoulometry experiments.

View Article and Find Full Text PDF

Potentiometric titrations of the cytochrome c oxidase (CcO) immobilized in a biomimetic membrane system were followed by two-dimensional surface-enhanced IR absorption spectroscopy (2D SEIRAS) in the ATR-mode. Direct electron transfer was employed to vary the redox state of the enzyme. The CcO was shown to undergo a conformational transition from a non-activated to an activated state after it was allowed to turnover in the presence of oxygen.

View Article and Find Full Text PDF

In this work, we show molecular resolution scanning tunneling microscopy (STM) images of gramicidin, a model antibacterial peptide, inserted into a phospholipid matrix. The resolution of the images is superior to that obtained in previous attempts to image gramicidin in a lipid environment using atomic force microscopy (AFM). This breakthrough has allowed visualization of individual peptide molecules surrounded by lipid molecules.

View Article and Find Full Text PDF

We have applied a recently developed method (Langmuir 2006, 22, 5509-5519) to determine charge numbers per adsorbed molecule and packing densities in self-assembled monolayers (SAMs) of octadecanethiol (C18SH), a representative long-chain thiol. Our method yields values of area per molecule that are physically reasonable, in contrast to the popular reductive desorption method, which gives molecular areas that are smaller than those determined by the van der Waals radii. In a nonadsorbing electrolyte, we were able to model the dependence of the charge number per adsorbed molecule on the electrode potential, taking into account that the desorption process is a substitution reaction between the solvent and the adsorbate.

View Article and Find Full Text PDF