Reactivation of fetal hemoglobin expression alleviates the symptoms associated with β-globinopathies, severe hereditary diseases with significant global health implications due to their high morbidity and mortality rates. The symptoms emerge following the postnatal transition from fetal-to-adult hemoglobin expression. Extensive research has focused on inducing the expression of the fetal γ-globin subunit to reverse this switch and ameliorate these symptoms.
View Article and Find Full Text PDFHaploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of β-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels.
View Article and Find Full Text PDFThe BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo.
View Article and Find Full Text PDFHaploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant.
View Article and Find Full Text PDFKrüppel-like factor 1 (KLF1) is an essential transcription factor for erythroid development, as demonstrated by Klf1 knockout mice which die around E14 due to severe anemia. In humans, >140 KLF1 variants, causing different erythroid phenotypes, have been described. The KLF1 Nan variant, a single amino acid substitution (p.
View Article and Find Full Text PDFThe β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains.
View Article and Find Full Text PDFContext: Patients with resistance to thyroid hormone (TH) α (RTHα) are characterized by growth retardation, macrocephaly, constipation, and abnormal thyroid function tests. In addition, almost all RTHα patients have mild anemia, the pathogenesis of which is unknown. Animal studies suggest an important role for TH and TH receptor (TR)α in erythropoiesis.
View Article and Find Full Text PDFCurrently, bone marrow transplantation is the only curative treatment for β-thalassemia and sickle cell disease. In rare cases, sustained and full fetal hemoglobin production was observed in patients after failure of bone marrow transplantation. This rendered the patients transfusion-free, despite genetic disease and transplant rejection.
View Article and Find Full Text PDFThe TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA.
View Article and Find Full Text PDFChromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC).
View Article and Find Full Text PDFBackground: In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been established.
Design And Methods: To study the role of Hmg20b in erythropoiesis, we performed knockdown experiments in a differentiation-competent mouse fetal liver cell line, and in primary mouse fetal liver cells.
An estimated 6% to 7% of the earth's population carries a mutation affecting red blood cell function. The β-thalassemias and sickle cell disease are the most common monogenic disorders caused by these mutations. Increased levels of γ-globin ameliorate the severity of these diseases because fetal hemoglobin (HbF; α2γ2) can effectively replace adult hemoglobin (HbA; α2β2) and counteract polymerization of sickle hemoglobin (HbS; α2β(S)2).
View Article and Find Full Text PDFWe describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified by both asymmetric and symmetric arginine methylation in vivo.
View Article and Find Full Text PDFThe human monocarboxylate transporter 8 (hMCT8) protein mediates transport of thyroid hormone across the plasma membrane. Association of hMCT8 mutations with severe psychomotor retardation and disturbed thyroid hormone levels has established its physiological relevance, but little is still known about the basic properties of hMCT8. In this study we present evidence that hMCT8 does not form heterodimers with the ancillary proteins basigin, embigin, or neuroplastin, unlike other MCTs.
View Article and Find Full Text PDFDendritic cells are key initiators and regulators of the immune response. Dendritic cell commitment and function require orchestrated regulation of transcription. Gata1 is a transcription factor expressed in several hematopoietic lineages.
View Article and Find Full Text PDFThe cooperation of stem cell factor (SCF) and erythropoietin (Epo) is required to induce renewal divisions in erythroid progenitors, whereas differentiation to mature erythrocytes requires the presence of Epo only. Epo and SCF activate common signaling pathways such as the activation of protein kinase B (PKB) and the subsequent phosphorylation and inactivation of Foxo3a. In contrast, only Epo activates Stat5.
View Article and Find Full Text PDFLFM-A13, or alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide, was shown to inhibit Bruton's tyrosine kinase (Btk). Here we show that LFM-A13 efficiently inhibits erythropoietin (Epo)-induced phosphorylation of the erythropoietin receptor, Janus kinase 2 (Jak2) and downstream signalling molecules. However, the tyrosine kinase activity of immunoprecipitated or in vitro translated Btk and Jak2 was equally inhibited by LFM-A13 in in vitro kinase assays.
View Article and Find Full Text PDFErythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the receptor. We studied the roles of the docking molecules Grb2-associated binder-1 (Gab1) and Gab2 in EPO-induced signal transduction and erythropoiesis.
View Article and Find Full Text PDFErythropoiesis requires tight control of expansion, maturation, and survival of erythroid progenitors. Because activation of phosphatidylinositol-3-kinase (PI3K) is required for erythropoietin/stem cell factor-induced expansion of erythroid progenitors, we examined the role of the PI3K-controlled Forkhead box, class O (FoxO) subfamily of Forkhead transcription factors. FoxO3a expression and nuclear accumulation increased during erythroid differentiation, whereas untimely induction of FoxO3a activity accelerated differentiation of erythroid progenitors to erythrocytes.
View Article and Find Full Text PDFTesticular germ-cell tumors (TGCTs) of adolescents and adults originate from intratubular germ cell neoplasia (ITGCN), which is composed of the malignant counterparts of embryonal germ cells. ITGCN cells are characterized, among others, by the presence of stem cell factor receptor c-KIT. Once established, ITGCN will always progress to invasiveness.
View Article and Find Full Text PDF