Publications by authors named "Thamali Ayagama"

High cardiac sympathetic drive and release of the sympathetic cotransmitter neuropeptide Y (NPY) are significant features of congestive heart failure (CHF), in which resting venous NPY levels are known to be associated with mortality. However, whether circulating NPY levels increase during exercise in CHF when they are already elevated is controversial. We sought to establish the dynamics of circulating NPY levels in CHF patients treated with contemporary medical therapy and devices in relationship to indices of performance linked to long-term prognosis.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the inositol (1,4,5)-trisphosphate (IP) signaling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process.

View Article and Find Full Text PDF

William Bayliss and Ernest Starling are not only famous as pioneers in cardiovascular physiology, but also responsible for the discovery of the first hormone (from the Greek 'excite or arouse'), the intestinal signalling molecule and neuropeptide secretin in 1902. Our research group focuses on neuropeptides and neuromodulators that influence cardiovascular autonomic control as potential biomarkers in disease and tractable targets for therapeutic intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator.

View Article and Find Full Text PDF

Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood.

View Article and Find Full Text PDF

Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307.

View Article and Find Full Text PDF

The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.

View Article and Find Full Text PDF

Inositol trisphosphate (IP) is a Ca-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP-mediated Ca release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP receptors with AC8, while AC1 was located in close vicinity.

View Article and Find Full Text PDF