Heliyon
March 2024
Despite the raised awareness of the role of pharmacogenomic (PGx) in personalized medicines for COVID-19, data for COVID-19 drugs is extremely scarce and not even a publication on this topic for post-COVID-19 medications to date. In the current study, we investigated the genetic variations associated with COVID-19 and post-COVID-19 therapies by using whole genome sequencing data of the 1000 Vietnamese Genomes Project (1KVG) in comparison with other populations retrieved from the 1000 Genomes Project Phase 3 (1KGP3) and the Genome Aggregation Database (gnomAD). Moreover, we also evaluated the risk of drug interactions in comorbid COVID-19 and post-COVID-19 patients based on pharmacogenomic profiles of drugs using a computational approach.
View Article and Find Full Text PDFMost current genotype imputation methods are reference-based, which posed several challenges to users, such as high computational costs and reference panel inaccessibility. Thus, deep learning models are expected to create reference-free imputation methods performing with higher accuracy and shortening the running time. We proposed a imputation method using recurrent neural networks integrating with an additional discriminator network, namely GRUD.
View Article and Find Full Text PDF