Scorpion venoms are a complex mixture of components. Among them the most important are peptides, which presents the capacity to interact and modulate several ion channel subtypes, including voltage-gated sodium channels (Na). Screening the activity of scorpion toxins on different subtypes of Na reveals the scope of modulatory activity and, in most cases, low channel selectivity.
View Article and Find Full Text PDFThe venom of social wasps has been poorly studied so far, despite the high number of accidents in humans and assessment of the use of these wasps as a biological control of pests. The study of the pharmacological effects of the venom is of great importance since the poisoning is dangerous causing serious systemic effects, including death in the case of multiple attacks. In this study, the pharmacological activities of venom from the social wasp Synoeca cyanea were evaluated by the following assays: LD50 in mice, the behavioural effects and the hemorrhagic activity induced by the venom in mice, the oedematogenic activity in rat, the haemolysis in human blood, the stimulating effect on guinea-pig smooth muscle, and the antimicrobial activity.
View Article and Find Full Text PDFThe kappa-KTx family of peptides, which is the newest K⁺-channel blocker family from scorpion venom, is present in scorpions from the families Scorpionidae and Liochelidae. Differently from the other scorpion KTx families, the three-dimensional structure of the known kappa-KTxs toxins is formed by two parallel α-helices linked by two disulfide bridges. Here, the characterization of a new kappa-KTx peptide, designated kappa-KTx 2.
View Article and Find Full Text PDF