Publications by authors named "Thalia Salinas-Giege"

Excluding the few dozen proteins encoded by the chloroplast and mitochondrial genomes, the majority of plant cell proteins are synthesized by cytosolic ribosomes. Most of these nuclear-encoded proteins are then targeted to specific cell compartments thanks to localization signals present in their amino acid sequence. These signals can be specific amino acid sequences known as transit peptides, or post-translational modifications, ability to interact with specific proteins or other more complex regulatory processes.

View Article and Find Full Text PDF

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown.

View Article and Find Full Text PDF

As in many other organisms, tRNA-derived RNAs (tDRs) exist in plants and likely have multiple functions. We previously showed that tDRs are present in Arabidopsis under normal growth conditions, and that the ones originating from alanine tRNAs are the most abundant in leaves. We also showed that tDRs Ala of 20 nt produced from mature tRNA (AGC) can block in vitro protein translation.

View Article and Find Full Text PDF

The spatial organization of protein synthesis in the eukaryotic cell is essential for maintaining the integrity of the proteome and the functioning of the cell. Translation on free polysomes or on ribosomes associated with the endoplasmic reticulum has been studied for a long time. More recent data have revealed selective translation of mRNAs in other compartments, in particular at the surface of mitochondria.

View Article and Find Full Text PDF

Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components.

View Article and Find Full Text PDF

In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs.

View Article and Find Full Text PDF

Post-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood.

View Article and Find Full Text PDF

Present-day mitochondria derive from a single endosymbiosis of an α-proteobacterium into a proto-eukaryotic cell. Since this monophyletic event, mitochondria have evolved considerably, and unique traits have been independently acquired in the different eukaryotic kingdoms. Mitochondrial genome expression and RNA metabolism have diverged greatly.

View Article and Find Full Text PDF

nematodes produce and maintain imprints of attractive chemosensory cues to which they are exposed early in life. Early odor-exposure increases adult chemo-attraction to the same cues. Imprinting is transiently or stably inherited, depending on the number of exposed generations.

View Article and Find Full Text PDF

Differences in tRNA expression have been implicated in a remarkable number of biological processes. There is growing evidence that tRNA genes can play dramatically different roles depending on both expression and post-transcriptional modification, yet sequencing tRNAs to measure abundance and detect modifications remains challenging. Their secondary structure and extensive post-transcriptional modifications interfere with RNA-seq library preparation methods and have limited the utility of high-throughput sequencing technologies.

View Article and Find Full Text PDF

Voltage-dependent anion channels (VDACs) are essential components of the mitochondrial outer membrane. VDACs are involved in the exchange of numerous ions and molecules, from ATP to larger molecules such as tRNAs, and are supposed to adjust exchanges in response to cell signals and stresses. Four major VDACs have been identified in .

View Article and Find Full Text PDF

Transfer RNA-derived fragments (tRFs) exist in all branches of life. They are involved in RNA degradation, regulation of gene expression, ribosome biogenesis. In archaebacteria, kinetoplastid, yeast, and human cells, they were also shown to regulate translation.

View Article and Find Full Text PDF

RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region.

View Article and Find Full Text PDF

The unicellular photosynthetic organism, Chlamydomonas reinhardtii, represents a powerful model to study mitochondrial gene expression. Here, we show that the 5'- and 3'-extremities of the eight Chlamydomonas mitochondrial mRNAs present two unusual characteristics. First, all mRNAs start primarily at the AUG initiation codon of the coding sequence which is often marked by a cluster of small RNAs.

View Article and Find Full Text PDF

The maturation of tRNA precursors involves the 5' cleavage of leader sequences by an essential endonuclease called RNase P. Beyond the ancestral ribonucleoprotein (RNP) RNase P, a second type of RNase P called PRORP (protein-only RNase P) evolved in eukaryotes. The current view on the distribution of RNase P in cells is that multiple RNPs, multiple PRORPs or a combination of both, perform specialised RNase P activities in the different compartments where gene expression occurs.

View Article and Find Full Text PDF

Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell.

View Article and Find Full Text PDF