Publications by authors named "Thalia Dominguez Bucio"

A new family of phase change material based on antimony has recently been explored for applications in near-IR tunable photonics due to its wide bandgap, manifested as broadband transparency from visible to NIR wavelengths. Here, we characterize [Formula: see text] optically and demonstrate the integration of this phase change material in a silicon nitride platform using a microring resonator that can be thermally tuned using the amorphous and crystalline states of the phase change material, achieving extinction ratios of up to 18 dB in the C-band. We extract the thermo-optic coefficient of the amorphous and crystalline states of the [Formula: see text] to be 3.

View Article and Find Full Text PDF

The integration of fast and power efficient electro-absorption modulators on silicon is of utmost importance for a wide range of applications. To date, Franz-Keldysh modulators formed of bulk Ge or GeSi have been widely adopted due to the simplicity of integration required by the modulation scheme. Nevertheless, to obtain operation for a wider range of wavelengths (O to C band) a thick stack of Ge/GeSi layers forming quantum wells is required, leading to a dramatic increase in the complexity linked to sub-micron waveguide coupling.

View Article and Find Full Text PDF

We propose and numerically demonstrate a versatile strategy that allows designing highly efficient dual-level grating couplers in different silicon nitride-based photonic platforms. The proposed technique, which can generally be applied to an arbitrary silicon nitride film thickness, is based on the simultaneous optimization of two grating coupler levels to obtain high directionality and grating-fibre mode matching at the same time. This is achieved thanks to the use of two different linear apodizations, with opposite signs, applied to the two grating levels, whose design parameters are determined by using a particle swarm optimization method.

View Article and Find Full Text PDF

In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.

View Article and Find Full Text PDF

We show that subwavelength Si-rich nitride waveguides efficiently sustain high-speed transmissions at 2 μm. We report the transmission of a 10 Gbit/s signal over 3.5 cm with negligible power penalty.

View Article and Find Full Text PDF

We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20  nm, BW∼11  nm, IL<1.

View Article and Find Full Text PDF

Ultrahigh-Q Photonic Crystal cavities were realized in a suspended Silicon Rich Nitride (SiNx) platform for applications at telecom wavelengths. Using a line width modulated cavity design we achieved a simulated Q of 520,000 with a modal volume of 0.77(λ/n).

View Article and Find Full Text PDF

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH-free SiN layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiN layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.

View Article and Find Full Text PDF

A silicon nitride waveguide is a promising platform for integrated photonics, particularly due to its low propagation loss compared to other complementary metal-oxide-semiconductor compatible waveguides, including silicon-on-insulator. Input/output coupling in such thin optical waveguides is a key issue for practical implementations. Fiber-to-chip grating couplers in silicon nitride usually exhibit low coupling efficiency because the moderate index contrast leads to weak radiation strengths and poor directionality.

View Article and Find Full Text PDF

We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.

View Article and Find Full Text PDF

Silicon-germanium (Si(1-x)Ge(x)) has become a material of great interest to the photonics and electronics industries due to its numerous interesting properties including higher carrier mobilities than Si, a tuneable lattice constant, and a tuneable bandgap. In previous work, we have demonstrated the ability to form localised areas of single crystal, uniform composition SiGe-on-insulator. Here we present a method of simultaneously growing several areas of SiGe-on-insulator on a single wafer, with the ability to tune the composition of each localised SiGe area, whilst retaining a uniform composition in that area.

View Article and Find Full Text PDF