Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, and the modification at their redox center is an interesting strategy to overcome such harmful activity.
Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β- lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity.
This review discusses the state of the art, challenges and perspectives in recent applications of electrochemistry in the life sciences. It deals mainly with the elucidation of molecular mechanisms of drug action, drug design and development, involving electron transfer, pharmaco-electrochemistry (the combination of electrochemical and pharmacological assays), and electrochemical studies of membrane models and drug delivery. It aims to shed light on the question: does electrochemistry really contribute to this area? It includes a general introduction for the use of electrochemistry in the life sciences, with a focus on how electrochemistry can uniquely provide both kinetic and thermodynamic information.
View Article and Find Full Text PDFThis review discusses the state of the art, challenges and perspectives in recent applications of electrochemistry in the life sciences. It deals mainly with the elucidation of molecular mechanisms of drug action, drug design and development, involving electron transfer, pharmaco-electrochemistry (the combination of electrochemical and pharmacological assays), and electrochemical studies of membrane models and drug delivery. It aims to shed light on the question: does electrochemistry really contribute to this area? It includes a general introduction for the use of electrochemistry in the life sciences, with a focus on how electrochemistry can uniquely provide both kinetic and thermodynamic information.
View Article and Find Full Text PDF