Aims: Ca and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca currents and proliferation in pituitary tumor GH3 cells.
View Article and Find Full Text PDFThe octapeptide angiotensin II (ANG II) plays a pivotal role in the maintenance of blood pressure by activating ANG II receptors located in variety of cell types including neurons housed in the central nervous system (CNS) and in the peripheral nervous system (PNS). ANG II (100 nM) blocked spike frequency accommodation (SFA) recorded with whole-cell patch technique in acutely isolated nodose ganglion neurons (NGN) from adult rats. ANG II increased the frequency of action potentials (AP) produced by supramaximal 500 ms depolarizing currents recorded in both tonic (16 Hz vs.
View Article and Find Full Text PDFAngiotensin II (ANG II) has the ability to modulate the activity of neurons involved in the cardiovascular regulation. One effective way of doing that is by changing calcium currents. In the present study, we investigated the effects of ANG II on high-voltage-activated (HVA) Ca2+ currents measured in adult vagal afferent neurons using the whole-cell patch-clamp technique.
View Article and Find Full Text PDFA number of neurotoxins from venoms of invertebrates and plants are ligands for voltage-gated Na+ channels and are useful tools for studying Na+ channel function and structure. Using whole-cell recordings from vagal afferent nodose neurons, we studied neurotoxins that target Na+ channels. We asked whether Ts3 (an alpha-scorpion toxin) and/or veratridine (a lipid-soluble toxin), could modify the TTX-resistant Na+ current generated by vagal afferent nodose neurons.
View Article and Find Full Text PDF