Publications by authors named "Thais E T Pompeu"

LASSBio-579, an -phenylpiperazine antipsychotic lead compound, has been previously reported as a D receptor (DR) ligand with antipsychotic-like activities in rodent models of schizophrenia. In order to better understand the molecular mechanism of action of LASSBio-579 and of its main metabolite, LQFM 037, we decided to address the hypothesis of functional selectivity at the DR. HEK-293T cells transiently coexpressing the human long isoform of D receptor (DLR) and bioluminescence resonance energy transfer (BRET)-based biosensors were used.

View Article and Find Full Text PDF

Aiming to identify new antipsychotic lead-compounds, our group has been working on the design and synthesis of new N-phenylpiperazine derivatives. Here, we characterized LASSBio-1422 as a pharmacological prototype of this chemical series. Adult male Wistar rats and CF1 mice were used for in-vitro and in-vivo assays, respectively.

View Article and Find Full Text PDF

In an attempt to better understand the molecular mechanism of action of the antipsychotic lead LASSBio-579 and of its main metabolite LQFM 037, the aim of this work was to evaluate their intrinsic activity and binding kinetics at the dopamine D2 receptor. In transfected HEK cells expressing the D2L receptor under an inducible promoter, LASSBio-579 and LQFM 037, but not clozapine, behaved as weak partial agonists in [(35)S]-GTPγS binding assays performed in optimized conditions previously shown to evidence the partial agonist profile of aripiprazole. Besides, data obtained in radioligand competition assays on rat striatal membranes suggested a rapid association to and dissociation from the D2-like receptors.

View Article and Find Full Text PDF

Introduction: Determination of the intrinsic efficacy of ligands at the 5-HT1A receptor is important for selecting drug candidates, e.g. in the case of schizophrenia where partial agonism is a favorable property shared by different atypical antipsychotics.

View Article and Find Full Text PDF

In an attempt to increase the affinity of our antipsychotic lead compound LASSBio-579 (1-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)-4-phenylpiperazine; (2)) for the 5-HT(2A) receptor, we synthesized five new N-phenylpiperazine derivatives using a linear synthetic route and the homologation strategy. The binding profile of these compounds was evaluated for a series of dopaminergic, serotonergic and alpha-adrenergic receptors relevant for schizophrenia, using classical competition assays. Increasing the length of the spacer between the functional groups of (2) proved to be appropriated since the affinity of these compounds increased 3-10-fold for the 5-HT(2A) receptor, with no relevant change in the affinity for the D₂-like and 5-HT(1A) receptors.

View Article and Find Full Text PDF

Using a combination of docking and molecular dynamics simulations, we predicted that p-hydroxylation by CYP1A2 would be the main metabolic pathway for the 1-[1-(4-chlorophenyl)-1H-4pyrazolylmethyl] phenylhexahydropiperazine, LASSBio-579 (3). As the result of a screening process with strains of filamentous fungi, Cunninghamella echinulata ATCC 9244 was chosen to scale up the preparation of the p-hydroxylated metabolite (4). About 30 min after i.

View Article and Find Full Text PDF