This work applies a higher order thickness-stretched model for the electro-elastic analysis of the composite graphene origami reinforced square plate sandwiched by the piezoelectric/piezomagnetic layers subjected to the thermal, electric, magnetic and mechanical loads. The plate is manufactured of a copper matrix reinforced with graphene origami where the effective material properties are calculated based on the micromechanical models as a function of volume fraction and folding degree of graphene origami, material properties of matrix, reinforcement, and local temperature. The governing equations are derived using the virtual work principle in terms of the bending, shear and stretching functions, in-plane displacements, electric, and magnetic potentials.
View Article and Find Full Text PDF