Publications by authors named "Thaiene A Reis"

Topical application of aluminum-chloride phthalocyanine (AlClPc) is a challenge because of the drug's extremely low solubility, which prevents its absorption into deeper skin layers and causes molecule aggregation, reducing the photophysical effect. The goal of this study was to obtain a formulation applied in a certain condition that would allow homogeneous accumulation of AlClPc in cutaneous tissues, meaning a safer and non-invasive topical treatment for skin tumors based on photodynamic therapy. We first prepared and characterized AlClPc complexes with cyclodextrin to increase the photosensitizing agent solubility.

View Article and Find Full Text PDF

Considering the feasibility of the aluminum phthalocyanine chloride (AlPcCl) application in the topical photodynamic therapy of cutaneous tumors and the lack of HPLC methods capable of supporting skin permeation experiments using this compound, the aim of this study was to obtain a simple and selective chromatographic method for AlPcCl determination in skin matrices. A HPLC-UV/Vis method was developed using a normal-phase column operating at 30°C, an isocratic mobile phase of methanol : phosphoric acid (0.01 M) at 1.

View Article and Find Full Text PDF

Local treatment of vaginal diseases presents advantages over systemic treatments and the interaction of the drug delivery systems with the biological tissue is a key factor for a successful vaginal topical therapy. Conventional protocols for permeation studies have high variability and fail in distinguishing drug penetration from mucoadhesive or colloidal drug delivery systems from conventional formulations, as tissue interaction is normally under estimated. The protocol presented in this paper is a simplified ex vivo vertical model, in which formulations are placed in hung porcine vaginas with the objective of mimicking a condition closer to the biological circumstance, specifically considering the possible leak from the vaginal canal in the vertical position.

View Article and Find Full Text PDF

This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.

View Article and Find Full Text PDF