Publications by authors named "Thai V Truong"

Number sense, the ability to discriminate the quantity of objects, is crucial for survival. To understand how neurons work together and develop to mediate number sense, we used two-photon fluorescence light sheet microscopy to capture the activity of individual neurons throughout the brain of larval , while displaying a visual number stimulus to the animal. We identified number-selective neurons as early as 3 days post-fertilization and found a proportional increase of neurons tuned to larger quantities after 3 days.

View Article and Find Full Text PDF

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots.

View Article and Find Full Text PDF

Summary: In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data.

View Article and Find Full Text PDF

In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data.

View Article and Find Full Text PDF

Hyperspectral fluorescence imaging improves multiplexed observations of biological samples by utilizing multiple color channels across the spectral range to compensate for spectral overlap between labels. Typically, spectral resolution comes at a cost of decreased detection efficiency, which both hampers imaging speed and increases photo-toxicity to the samples. Here, we present a high-speed, high-efficiency snapshot spectral acquisition method, based on optical compression of the fluorescence spectra via Fourier transform, that overcomes the challenges of discrete spectral sampling: single-shot hyperspectral phasor camera (SHy-Cam).

View Article and Find Full Text PDF

The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2.

View Article and Find Full Text PDF

Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet.

View Article and Find Full Text PDF

An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities.

View Article and Find Full Text PDF

Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F.

View Article and Find Full Text PDF

The performance of light-field microscopy is improved by selectively illuminating the relevant subvolume of the specimen with a second objective lens. Here we advance this approach to a single-objective geometry, using an oblique one-photon illumination path or two-photon illumination to accomplish selective-volume excitation. The elimination of the second orthogonally oriented objective to selectively excite the volume of interest simplifies specimen mounting; yet, this single-objective approach still reduces the out-of-volume background, resulting in improvements in image contrast, effective resolution, and volume reconstruction quality.

View Article and Find Full Text PDF

Light-sheet microscopy offers faster imaging and reduced phototoxicity in comparison to conventional point-scanning microscopy, making it a preferred technique for imaging biological dynamics for durations of hours or days. Such extended imaging sessions pose a challenge, as it reduces the number of specimens that can be imaged in a given day. Here, we present a versatile light-sheet imaging instrument that combines two independently controlled microscope-twins, built so that they can share an ultrafast near-infrared laser and a bank of continuous-wave visible lasers, increasing the throughput and decreasing the cost.

View Article and Find Full Text PDF
Article Synopsis
  • - Light-field fluorescence microscopy allows for quick 3D imaging but struggles with low contrast due to background noise from broad illumination techniques.
  • - The new method, selective volume illumination microscopy (SVIM), focuses the light only on the area of interest, effectively reducing background and significantly improving image contrast.
  • - SVIM has been successfully used to create detailed 3D movies of bacteria in seawater and monitor heartbeats and brain activity in larval zebrafish, showcasing its potential for dynamic biological studies at a cellular level.
View Article and Find Full Text PDF

Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and -expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of -expressing neurons induces neuronal activity levels consistent with normal sleep.

View Article and Find Full Text PDF

Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in air sac budding.

View Article and Find Full Text PDF

We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines.

View Article and Find Full Text PDF

Spatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.

View Article and Find Full Text PDF

The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by which cells shape the skeleton remains to be fully illuminated. Here we perform quantitative analyses of cell behaviours in the growth plate cartilage, the template for long bone formation, to gain insights into this process. Using a robust avian embryonic organ culture, we employ time-lapse two-photon laser scanning microscopy to observe proliferative cells' behaviours during cartilage growth, resulting in cellular trajectories with a spreading displacement mainly along the tissue elongation axis.

View Article and Find Full Text PDF

Patterning of the dorsal-ventral axis in the early Drosophila embryo depends on the nuclear distribution of the Dorsal transcription factor. Using live two-photon light-sheet microscopy, we quantified the nuclear Dorsal gradient in space and time and found that its amplitude and basal levels display oscillations throughout early embryonic development. These dynamics raise questions regarding how cells can reproducibly establish patterns of gene expression from a rapidly varying signal.

View Article and Find Full Text PDF

Multiphoton imaging is a promising approach for addressing current issues in systems biology and high-content investigation of embryonic development. Recent advances in multiphoton microscopy, including light-sheet illumination, optimized laser scanning, adaptive and label-free strategies, open new opportunities for embryo imaging. However, the literature is often unclear about which microscopy technique is most adapted for achieving specific experimental goals.

View Article and Find Full Text PDF

We implemented two-photon scanned light-sheet microscopy, combining nonlinear excitation with orthogonal illumination of light-sheet microscopy, and showed its excellent performance for in vivo, cellular-resolution, three-dimensional imaging of large biological samples. Live imaging of fruit fly and zebrafish embryos confirmed that the technique can be used to image up to twice deeper than with one-photon light-sheet microscopy and more than ten times faster than with point-scanning two-photon microscopy without compromising normal biology.

View Article and Find Full Text PDF

In vivo study of embryonic morphogenesis tremendously benefits from recent advances in live microscopy and computational analyses. Quantitative and automated investigation of morphogenetic processes opens the field to high-content and high-throughput strategies. Following experimental workflow currently developed in cell biology, we identify the key challenges for applying such strategies in developmental biology.

View Article and Find Full Text PDF

Enhanced optical reorientation of molecules in a pure liquid was observed when the optical field was in resonance with the molecular electronic transition. The enhancement comes from photoinduced change in intermolecular interaction. Experimental results agree well with the time-dependent theory based on a mean-field model of intermolecular interaction.

View Article and Find Full Text PDF

We present a comprehensive study on the dynamics of laser-induced molecular reorientation in a dye-doped liquid crystalline (LC) medium that exhibits significant enhancement of the optical Kerr nonlinearity due to guest-host interaction. Using various techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photoexcitation and, thus, were able to follow the transient process in which photoexcitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced optical Kerr nonlinearity. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.

View Article and Find Full Text PDF