Publications by authors named "Thaher Pelaseyed"

Crohn's disease (CD) is the chronic inflammation of the terminal ileum and colon triggered by a dysregulated immune response to bacteria, but insights into specific molecular perturbations at the critical bacteria-epithelium interface are limited. Here we report that the membrane mucin MUC17 protected small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels and a compromised glycocalyx barrier allowed recurrent bacterial contact with enterocytes.

View Article and Find Full Text PDF

A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The formation of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes.

View Article and Find Full Text PDF

The anaerobic spirochete causes intestinal spirochetosis, characterized by the intimate attachment of bacterial cells to the colonic mucosa, potentially leading to symptoms such as diarrhea, abdominal pain, and weight loss. Despite the clinical significance of infections, the mechanism of the interaction between and the colon epithelium is not known. We characterized the molecular mechanism of the -epithelium interaction and its impact on the epithelial barrier during infection.

View Article and Find Full Text PDF

In the distal colon, mucus secreting goblet cells primarily confer protection from luminal microorganisms via generation of a sterile inner mucus layer barrier structure. Bacteria-sensing sentinel goblet cells provide a secondary defensive mechanism that orchestrates mucus secretion in response to microbes that breach the mucus barrier. Previous reports have identified mucus barrier deficiencies in adult germ-free mice, thus implicating a fundamental role for the microbiota in programming mucus barrier generation.

View Article and Find Full Text PDF

Crohn's disease (CD) is the chronic inflammation of the ileum and colon triggered by bacteria, but insights into molecular perturbations at the bacteria-epithelium interface are limited. We report that membrane mucin MUC17 protects small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels correlated with a compromised glycocalyx, allowing bacterial contact with enterocytes.

View Article and Find Full Text PDF

A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The establishment of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The enterocytic glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes.

View Article and Find Full Text PDF

Human tissue surfaces are coated with mucins, a family of macromolecular sugar-laden proteins serving diverse functions from lubrication to the formation of selective biochemical barriers against harmful microorganisms and molecules. Membrane mucins are a distinct group of mucins that are attached to epithelial cell surfaces where they create a dense glycocalyx facing the extracellular environment. All mucin proteins carry long stretches of tandemly repeated sequences that undergo extensive O-linked glycosylation to form linear mucin domains.

View Article and Find Full Text PDF

The intestine is under constant exposure to chemicals, antigens, and microorganisms from the external environment. Apical aspects of transporting epithelial cells (enterocytes) form a brush-border membrane (BBM), shaped by packed microvilli coated with a dense glycocalyx. We present evidence showing that the glycocalyx forms an epithelial barrier that prevents exogenous molecules and live bacteria from gaining access to BBM.

View Article and Find Full Text PDF

Membrane mucins cover most mucosal surfaces throughout the human body. The intestine harbors complex population of microorganisms (the microbiota) and numerous exogenous molecules that can harm the epithelium. In the colon, where the microbial burden is high, a mucus barrier forms the first line of defense by keeping bacteria away from the epithelial cells.

View Article and Find Full Text PDF

Transmembrane mucin MUC17 is an integral part of the glycocalyx as it covers the brush border membrane of small intestinal enterocytes and presents an extended -glycosylated mucin domain to the intestinal lumen. Here, we identified two unknown phosphorylated serine residues, S4428 and S4492, in the cytoplasmic tail of human MUC17. We have previously demonstrated that MUC17 is anchored to the apical membrane domain via an interaction with the scaffolding protein PDZK1.

View Article and Find Full Text PDF

Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found.

View Article and Find Full Text PDF

Mucins are highly glycosylated proteins which protect the epithelium. In the small intestine, the goblet cell-secreted Muc2 mucin constitutes the main component of the loose mucus layer that traps luminal material. The transmembrane mucin Muc17 forms part of the carbohydrate-rich glycocalyx covering intestinal epithelial cells.

View Article and Find Full Text PDF

How cells specify morphologically distinct plasma membrane domains is poorly understood. Prior work has shown that restriction of microvilli to the apical aspect of epithelial cells requires the localized activation of the membrane-F-actin linking protein ezrin. Using an system, we now define a multi-step process whereby the kinase LOK specifically phosphorylates ezrin to activate it.

View Article and Find Full Text PDF

To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs) have been described. We recently showed that butyrophilin-like (Btnl) 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of proinflammatory mediators, such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium.

View Article and Find Full Text PDF

Microvilli are actin-based structures found on the apical aspect of many epithelial cells. In this review, we discuss different types of microvilli, as well as comparisons with actin-based sensory stereocilia and filopodia. Much is known about the actin-bundling proteins of these structures; we summarize recent studies that focus on the components of the microvillar membrane.

View Article and Find Full Text PDF

The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches.

View Article and Find Full Text PDF

We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride and bicarbonate for proper mucin formation.

View Article and Find Full Text PDF

MUC1 and other membrane-associated mucins harbor long, up to 1 μm, extended highly glycosylated mucin domains and sea urchin sperm protein, enterokinase and agrin (SEA) domains situated on their extracellular parts. These mucins line luminal tracts and organs, and are anchored to the apical cell membrane by a transmembrane domain. The SEA domain is highly conserved and undergoes a molecular strain-dependent autocatalytic cleavage during folding in the endoplasmic reticulum, a process required for apical plasma membrane expression.

View Article and Find Full Text PDF

In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2.

View Article and Find Full Text PDF

The transmembrane mucins in the enterocyte are type 1 transmembrane proteins with long and rigid mucin domains, rich in proline, threonine and serine residues that carry numerous O-glycans. Three of these mucins, MUC3, MUC12 and MUC17 are unique in harboring C-terminal class I PDZ motifs, making them suitable ligands for PDZ proteins. A screening of 123 different human PDZ domains for binding to MUC3 identified a strong interaction with the PDZ protein GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein).

View Article and Find Full Text PDF

The membrane-bound mucins have a heavily O-glycosylated extracellular domain, a single-pass membrane domain and a short cytoplasmic tail. Three of the membrane-bound mucins,MUC3, MUC12 and MUC17, are clustered on chromosome 7 and found in the gastrointestinal tract. These mucins have C-terminal sequences typical of PDZ-domain-binding proteins.

View Article and Find Full Text PDF