Microbial CO utilization reduces the carbon footprint, providing economic potential. Biochar, rich in minerals and trace metals, can enhance microbial activity. This study investigates poultry litter and switchgrass biochars produced at 350 and 700 °C (PLB350, PLB700, SGB350 and SGB700, respectively) affect CO conversion to C2-C6 alcohols and acids by Clostridium muellerianum P21, C.
View Article and Find Full Text PDFValorization and utilization of industrial food processing waste as value added products, platform chemicals and biofuels, are needed to improve sustainability and reduce waste management costs. Various industrial food waste stream samples were characterized with respect to their physico-chemical characteristics and elemental composition. A subset of starchy food wastes and milk dust powder were evaluated in batch fermentation to acetone, a useful platform chemical.
View Article and Find Full Text PDFThe presence of lignocellulose-derived microbial inhibitory compounds (LDMICs) in lignocellulosic biomass (LB) hydrolysates is a barrier to efficient conversion of LB hydrolysates to fuels and chemicals by fermenting microorganisms. Results from this study provide convincing evidence regarding the effectiveness of metabolically engineered NCIMB 8052 for the fermentation of LB-derived hydrolysates to acetone-butanol-ethanol (ABE). The engineered microbial strain (_SDR) was produced by the integration of an additional copy of a short-chain dehydrogenase/reductase (SDR) gene (3904) into the chromosome of NCIMB 8052 wildtype, where it is controlled by the constitutive thiolase promoter.
View Article and Find Full Text PDFA process engineering strategy was investigated towards developing a viable scheme for effective conversion of hydrothermolysis pretreated non-detoxified switchgrass hydrolysates (SH) to acetone butanol ethanol (ABE) using a metabolically engineered strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii_AKR. The engineered strain was modified by homologous integration into the chromosome and constitutive expression of Cbei_3974, which encodes an aldo-keto reductase.
View Article and Find Full Text PDFCarbon catabolite repression (CCR) limits microbial utilization of lignocellulose-derived pentoses. To relieve CCR in NCIMB 8052, we sought to downregulate catabolite control protein A (CcpA) using the M1GS ribozyme technology. A CcpA-specific ribozyme was constructed by tethering the catalytic subunit of RNase P (M1 RNA) to a guide sequence (GS) targeting CcpA mRNA (M1GS).
View Article and Find Full Text PDFTo enable the production of butanol with undiluted, non-detoxified sugarcane bagasse hemicellulose hydrolysates, this study developed a three-staged repeated-batch immobilized cell fermentation in which the efficiency of a 3D-printed nylon carrier to passively immobilize Clostridium saccharoperbutylacetonicum DSM 14923 was compared with sugarcane bagasse. The first stage consisted of sugarcane molasses fermentation, and in the second stage, non-detoxified sugarcane bagasse hemicellulose hydrolysates (SBHH) was pulse-fed to sugarcane molasses fermentation. In the next four batches, immobilized cells were fed with undiluted SBHH supplemented with molasses, and SBHH-derived xylose accounted for approximately 50% of the sugars.
View Article and Find Full Text PDFThe formation of exopolysaccharides (EPSs) during 2,3-butanediol (2,3-BD) fermentation by increases medium viscosity, which in turn presents considerable technical and economic challenges to 2,3-BD downstream processing. To eliminate EPS production during 2,3-BD fermentation, we used homologous recombination to disable the EPS biosynthetic pathway in The gene which encodes levansucrase, the major enzyme responsible for EPS biosynthesis in , was successfully disrupted. The levansucrase null mutant produced 2.
View Article and Find Full Text PDFIn situ detoxification of lignocellulose-derived microbial inhibitory compounds is an economical strategy for the fermentation of lignocellulose-derived sugars to fuels and chemicals. In this study, we investigated homologous integration and constitutive expression of Cbei_3974 and Cbei_3904, which encode aldo-keto reductase and previously annotated short chain dehydrogenase/reductase, respectively, in Clostridium beijerinckii NCIMB 8052 (Cb), resulting in two strains: Cb_3974 and Cb_3904. Expression of Cbei_3974 led to 2-fold increase in furfural detoxification relative to Cb_3904 and Cb_wild type.
View Article and Find Full Text PDFBackground: Inefficient utilization of glycerol by () is a major impediment to adopting glycerol metabolism as a strategy for increasing NAD(P)H regeneration, which would in turn, alleviate the toxicity of lignocellulose-derived microbial inhibitory compounds (LDMICs, e.g., furfural), and improve the fermentation of lignocellulosic biomass hydrolysates (LBH) to butanol.
View Article and Find Full Text PDFIn flexible ethanol-butanol plants, low tolerance to butanol by solventogenic clostridia (and resulting dilute fermentation) results in considerable number of empty fermentors whenever production focuses on ethanol. This research identified scenarios in which vacuum fermentation (in-situ vacuum recovery) may be applied to solve this problem. We conducted ethanol (Saccharomyces cerevisiae) and ABE (Clostridium beijerinckii NCIMB 8052) batch vacuum fermentations of eucalyptus hydrolysates according to the distribution of sugars in a flexible plant.
View Article and Find Full Text PDFWe report a Thermotoga hypogea (Th) alcohol dehydrogenase (ADH)-dependent spectrophotometric assay for quantifying the amount of butanol in growth media, an advance that will facilitate rapid high-throughput screening of hypo- and hyper-butanol-producing strains of solventogenic Clostridium species. While a colorimetric nitroblue tetrazolium chloride-based assay for quantitating butanol in acetone-butanol-ethanol (ABE) fermentation broth has been described previously, we determined that Saccharomyces cerevisiae (Sc) ADH used in this earlier study exhibits approximately 13-fold lower catalytic efficiency towards butanol than ethanol. Any Sc ADH-dependent assay for primary quantitation of butanol in an ethanol-butanol mixture is therefore subject to "ethanol interference".
View Article and Find Full Text PDFThis work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant.
View Article and Find Full Text PDFUnderstanding the capacity of Paenibacillus polymyxa DSM 365 to tolerate increasing concentrations of 2,3-butanediol (2,3-BD) is critical to engineering a 2,3-BD-overproducing strain. Hence, we investigated the response of P. polymyxa to high 2,3-BD concentrations.
View Article and Find Full Text PDFLignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC(®)BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates.
View Article and Find Full Text PDFBiobutanol is a next-generation liquid biofuel with properties akin to those of gasoline. There is a widespread effort to commercialize biobutanol production from agricultural residues, such as corn stover, which do not compete with human and animal foods. This pursuit is backed by extensive government mandates to expand alternative energy sources.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2016
While production of biofuels from renewable resources is currently receiving increased attention globally, concerns on availability and sustainability of cheap substrates for their production are growing as well. Lignocellulose-derived sugars (LDS) remain underutilized and merit consideration as a key feedstock. Among other obstacles such as low yield and low solvent titer, mitigation of stresses stemming from lignocellulose-derived microbial inhibitory compounds (LDMICs) that severely impair cell growth and solvent production is a major area of research interest.
View Article and Find Full Text PDFThe present study evaluated butanol production from switchgrass based on hydrothermolysis pretreatment. The inhibitors present in the hydrolyzates were measured. Results showed poor butanol production (1g/L) with non-detoxified hydrolyzate.
View Article and Find Full Text PDFFermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.
View Article and Find Full Text PDFGeneration of microbial inhibitory compounds such as furfural and 5-hydroxymethylfurfural (HMF) is a formidable roadblock to fermentation of lignocellulose-derived sugars to butanol. Bioabatement offers a cost effective strategy to circumvent this challenge. Although Clostridium beijerinckii NCIMB 8052 can transform 2-3 g/L of furfural and HMF to their less toxic alcohols, higher concentrations present in biomass hydrolysates are intractable to microbial transformation.
View Article and Find Full Text PDFIn addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g.
View Article and Find Full Text PDFEastern redcedar is an invasive softwood species in Oklahoma and across grasslands in the Central Plains of the United States and potential feedstock for butanol production. Butanol has higher energy content than ethanol and can be upgraded to jet and diesel fuels. The objective of this study was to develop a process for production of butanol from redcedar.
View Article and Find Full Text PDFReadily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii.
View Article and Find Full Text PDFFermentation of liquid hot water (LHW) pretreated Miscanthus giganteus (MG) by Clostridium beijerinckii NCIMB 8052 was investigated towards understanding the toxicity of lignocellulose-derived inhibitors to solventogenic Clostridium species vis-à-vis butanol production. While C. beijerinckii NCIMB 8052 did not grow in undiluted MG hydrolysate-based fermentation medium, supplementation of this medium with Calcium carbonate enabled the growth of C.
View Article and Find Full Text PDF