is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of has been hindered, as global ablation in the mouse causes neonatal lethality. Prior work analyzing in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation.
View Article and Find Full Text PDFStem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision.
View Article and Find Full Text PDFARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model.
View Article and Find Full Text PDFNerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored.
View Article and Find Full Text PDFThe calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) reside in microenvironments, referred to as niches, which provide structural support and molecular signals. Sensory nerves are niche components in the homeostasis of tissues such as skin, bone marrow and hematopoietic system. However, how the sensory nerve affects the behavior of MSCs remains largely unknown.
View Article and Find Full Text PDFThe communication between myogenic cells and their surrounding connective tissues is indispensable for muscle morphogenesis. During late embryonic development in mice, myogenic progenitors migrate to discrete sites to form individual muscles. The detailed mechanism of this process remains unclear.
View Article and Find Full Text PDFCranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues.
View Article and Find Full Text PDFEpigenetic regulation plays extensive roles in diseases and development. Disruption of epigenetic regulation not only increases the risk of cancer, but can also cause various developmental defects. However, the question of how epigenetic changes lead to tissue-specific responses during neural crest fate determination and differentiation remains understudied.
View Article and Find Full Text PDFChromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells.
View Article and Find Full Text PDFStem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation.
View Article and Find Full Text PDFCranial neural crest (CNC) cells give rise to bone, cartilage, tendons, and ligaments of the vertebrate craniofacial musculoskeletal complex, as well as regulate mesoderm-derived craniofacial muscle development through cell-cell interactions. Using the mouse soft palate as a model, we performed an unbiased single-cell RNA-seq analysis to investigate the heterogeneity and lineage commitment of CNC derivatives during craniofacial muscle development. We show that Runx2, a known osteogenic regulator, is expressed in the CNC-derived perimysial and progenitor populations.
View Article and Find Full Text PDFInteraction between adult stem cells and their progeny is critical for tissue homeostasis and regeneration. In multiple organs, mesenchymal stem cells (MSCs) give rise to transit amplifying cells (TACs), which then differentiate into different cell types. However, whether and how MSCs interact with TACs remains unknown.
View Article and Find Full Text PDFCraniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies.
View Article and Find Full Text PDFCranial neural crest (CNC) cells contribute to different cell types during embryonic development. It is unknown whether postmigratory CNC cells undergo dynamic cellular movement and how the process of cell fate decision occurs within the first pharyngeal arch (FPA). Our investigations demonstrate notable heterogeneity within the CNC cells, refine the patterning domains, and identify progenitor cells within the FPA.
View Article and Find Full Text PDFThe control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots.
View Article and Find Full Text PDFThe FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently.
View Article and Find Full Text PDFStem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown.
View Article and Find Full Text PDFJ Bone Miner Res
November 2020
Progenitor cells are crucial in controlling organ morphogenesis. Tooth development is a well-established model for investigating the molecular and cellular mechanisms that regulate organogenesis. Despite advances in our understanding of how tooth crown formation is regulated, we have limited understanding of tooth root development.
View Article and Find Full Text PDFPatterning is a critical step during organogenesis and is closely associated with the physiological function of organs. Tooth root shapes are finely tuned to provide precise occlusal support to facilitate the function of each tooth type. However, the mechanism regulating tooth root patterning and development is largely unknown.
View Article and Find Full Text PDFCalvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells (MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis.
View Article and Find Full Text PDFCleft palate is one of the most common craniofacial congenital defects in humans. It is associated with multiple genetic and environmental risk factors, including mutations in the genes encoding signaling molecules in the sonic hedgehog (Shh) pathway, which are risk factors for cleft palate in both humans and mice. However, the function of Shh signaling in the palatal epithelium during palatal fusion remains largely unknown.
View Article and Find Full Text PDF