The concentration and size distribution of particles ablated from the infrared matrix-assisted laser desorption/ionization matrix compounds succinic acid (butanedioic acid), α-cyano-4-hydroxycinnamic acid, and glycerol were measured using an aerodynamic particle sizer combined with a scanning mobility particle sizer. The two sizing instruments together had a sizing range to from 10 nm to 20 µm. Thin layers of the matrix compounds were irradiated with fluences between 6.
View Article and Find Full Text PDFParticles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG).
View Article and Find Full Text PDFThe ablated particle count and size distribution of four solid matrix materials commonly used for matrix-assisted laser desorption ionization (MALDI) were measured with a scanning mobility particle sizer (SMPS) combined with a light scattering aerodynamic particle sizer (APS). The two particle sizing instruments allowed size measurements in the range from 10 nm to 20 μm. The four solid matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), 4-nitroaniline (NA), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapic acid (SA).
View Article and Find Full Text PDFThe primary shortcoming of the z-filtered refocused INADEQUATE MAS NMR pulse sequence is the possibility of artifacts introduced during the z-filter due to spin diffusion where by extra peaks in the single-quantum dimension (from other sites in the molecule) appear correlated with a given double-quantum frequency. This is a problem when the spinning speeds are too slow (less than 15 kHz) to sufficiently average the proton-proton homonuclear dipolar couplings. This would be especially important when working with large volume rotors that are difficult to spin fast enough to completely average the homonuclear couplings.
View Article and Find Full Text PDF