We present an active fiber-based retroreflector providing high quality phase-retracing anti-parallel Gaussian laser beams for precision spectroscopy of Doppler sensitive transitions. Our design is well-suited for a number of applications where implementing optical cavities is technically challenging and corner cubes fail to match the demanded requirements, most importantly retracing wavefronts and preservation of the laser polarization. To illustrate the performance of the system, we use it for spectroscopy of the 2S-4P transition in atomic hydrogen and demonstrate an average suppression of the first order Doppler shift to 4 parts in 10 of the full collinear shift.
View Article and Find Full Text PDFWaveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator.
View Article and Find Full Text PDFWe report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6(1)S0 → 6(3)P1 intercombination line at 253.
View Article and Find Full Text PDFTo compare the increasing number of optical frequency standards, highly stable optical signals have to be transferred over continental distances. We demonstrate optical-frequency transfer over a 1840-km underground optical fiber link using a single-span stabilization. The low inherent noise introduced by the fiber allows us to reach short term instabilities expressed as the modified Allan deviation of 2×10(-15) for a gate time τ of 1 s reaching 4×10(-19) in just 100 s.
View Article and Find Full Text PDFWe investigate how suppressed modes in frequency combs are modified upon frequency doubling and self-phase modulation. We find, both experimentally and by using a simplified model, that these side-modes are amplified relative to the principal comb modes. Whereas frequency doubling increases their relative strength by 6 dB, the growth due to self-phase modulation can be much stronger and generally increases with nonlinear propagation length.
View Article and Find Full Text PDFOptical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks.
View Article and Find Full Text PDFWe report the use of a specially designed tapered photonic crystal fiber to produce a broadband optical spectrum covering the visible spectral range. The pump source is a frequency doubled Yb fiber laser operating at a repetition rate of 14 GHz and emitting sub-5 pJ pulses. We experimentally determine the optimum core diameter and achieve a 235 nm broad spectrum.
View Article and Find Full Text PDFWe report on injection locking of optically excited mechanical oscillations of a single, trapped ion. The injection locking dynamics are studied by analyzing the oscillator spectrum with a spatially selective Fourier transform technique and the oscillator phase with stroboscopic imaging. In both cases we find excellent agreement with theory inside and outside the locking range.
View Article and Find Full Text PDFBy frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages that take place in resonant cavities that are matched to the pulse repetition rate of 82 MHz. This allows for an overall efficiency of 4.
View Article and Find Full Text PDFWe demonstrate a method for precision spectroscopy on trapped ions in the limit of unresolved motional sidebands. By sympathetic cooling of a chain of crystallized ions, we suppress adverse temperature variations induced by the spectroscopy laser that usually lead to a distorted line profile and obtain a Voigt profile with negligible distortions. We applied the method to measure the absolute frequency of the astrophysically relevant D2 transition in single 24Mg+ ions and find 1 072 082 934.
View Article and Find Full Text PDFWe generated a series of harmonics in a xenon gas jet inside a cavity seeded by pulses from a Ti:sapphire mode-locked laser with a repetition rate of 10.8 MHz. Harmonics up to 19th order at 43 nm were observed with plateau harmonics at the microW power level.
View Article and Find Full Text PDFWe present first experimental results of our investigation of non-collinear high harmonic generation (NCHHG) with a chirped pulse amplification system. Collimated high harmonic radiation of higher than 9th order is observed along the bisector of two fundamental beams crossing in a xenon gas target. The obtained results show that cavity-assisted non-collinear high harmonic generation is a promising candidate for efficient generation and outcoupling of extreme ultraviolet (XUV) radiation.
View Article and Find Full Text PDFWe report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2005
Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned.
View Article and Find Full Text PDFWe have remeasured the absolute 1S-2S transition frequency nu(H) in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (-29+/-57) Hz for the drift of nu(H) with respect to the ground state hyperfine splitting nu(Cs) in 133Cs. Combining this result with the recently published optical transition frequency in 199Hg+ against nu(Cs) and a microwave 87Rb and 133Cs clock comparison, we deduce separate limits on alpha/alpha=(-0.
View Article and Find Full Text PDFWe demonstrate that multiphoton-induced photoelectron emission from a gold surface caused by low-energy (unamplified) 4-fs, 750-nm laser pulses is sensitive to the timing of electric field oscillations with respect to the pulse peak. This observation confirms recent theoretical predictions and opens the door to measuring the absolute value of the carrier-envelope phase difference of few-cycle light pulses with a solid-state detector.
View Article and Find Full Text PDFThe amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light.
View Article and Find Full Text PDFExtremely narrow optical resonances in cold atoms or single trapped ions can be measured with high resolution. A laser locked to such a narrow optical resonance could serve as a highly stable oscillator for an all-optical atomic clock. However, until recently there was no reliable clockwork mechanism that could count optical frequencies of hundreds of terahertz.
View Article and Find Full Text PDF