We describe the use of reverse Monte Carlo refinement to extract structural information from angle-resolved data of a Bragg peak. Starting with small-angle neutron scattering data, the positional order of an ensemble of flux lines in superconducting Nb is revealed. We discuss the uncovered correlation functions in the light of topical theories, in particular, the "Bragg glass" paradigm.
View Article and Find Full Text PDFA detailed structural analysis of a Langmuir-Blodgett (LB) multilayer composed of a polyelectrolyte-amphiphile complex (PAC) is presented. The PAC is self-assembled from metal ions, ditopic bis-terpyridines, and amphiphiles. The vertical structure of the LB multilayer is investigated by X-ray reflectometry.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2005
The glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of the glass transition temperature (T(g)) as the thickness of an ultrathin polymer film reduces below the radius of gyration but the change in the average T(g) was found to be very small. The existence of reversible negative and positive thermal expansion below and above T(g) increased the sensitivity of our thickness measurements performed using energy-dispersive x-ray reflectivity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2002
A basic understanding of the properties of thin polymer films is of fundamental importance for developing applications in nanotechnology. Results of energy and angle dispersive x-ray reflectivity measurements on polymer thin films as a function of temperature exhibit reversible negative thermal expansion below the glass transition temperature T(g). Above T(g), the thickness expansion becomes almost equal to the expected bulk volume expansion.
View Article and Find Full Text PDF