The discovery of hybrid states in strong coupling interaction has gained growing attention in cavity-quantum electrodynamics research owing to its fundamental directives and potential in advanced optical applications. The ultra-confined mode volume of plasmonic cavity gold nanorods (AuNRs), particularly at the nanorod tip "hotspot" provides a large coupling strength, a prerequisite for a coherent energy exchange in the strong coupling regime. Here, we reported a remarkable Rabi splitting of ∼231 meV between gold nanorods longitudinal localized surface plasmon resonance (LLSPR) mode and quantum dots (QDs) at ambient conditions, monitored by dielectric medium tuning.
View Article and Find Full Text PDFThe sandwiched material-analyte layer in the surface plasmon resonance (SPR)-Otto configuration emulates an optical cavity and, coupled with large optical nonlinearity material, the rate of light escaping from the system is reduced, allowing the formation of a strong coupling regime. Here, we report an organic pentamer SPR sensor using the Otto configuration to induce a strong coupling regime for creatinine detection. Prior to that, the SPR sensor chip was modified with an organic pentamer, 1,4-bis[2-(5-thiophene-2-yl)-1-benzothiopene]-2,5-dioctyloxybenzene (BOBzBT).
View Article and Find Full Text PDFThe resistive switching (RS) mechanism is resulted from the formation and dissolution of a conductive filament due to the electrochemical redox-reactions and can be identified with a pinched hysteresis loop on the I-V characteristic curve. In this work, the RS behaviour was demonstrated using a screen-printed electrode (SPE) and was utilized for creatinine sensing application. The working electrode (WE) of the SPE has been modified with a novel small organic molecule, 1,4-bis[2-(5-thiophene-2-yl)-1-benzothiopene]-2,5-dioctyloxybenzene (BOBzBT).
View Article and Find Full Text PDF