Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
Background: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIP.
Methods: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIP in astroglia.
Purpose: To investigate the macular spectral domain optical coherence tomography (SD-OCT) measurements of the segmented inner retinal layers in patients with exfoliation syndrome (XFS), exfoliation glaucoma (XFG).
Methods: This prospective cross-sectional study included 28 eyes with XFS, 47 eyes with XFG, and 29 healthy controls. Thickness of the inner retinal layers, including retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) was obtained from the horizontal SD-OCT scans.
IEEE Trans Ultrason Ferroelectr Freq Control
June 2022
Elevated intraocular pressure (IOP) is the most prevalent risk factor for initiation and progression of neurodegeneration in glaucoma. Ocular hypertension results from increased resistance to aqueous fluid outflow caused by reduced porosity and increased stiffness of tissues of the outflow pathway. Acoustic activation and resulting bioeffects of the perfluorocarbon (PFC) nanodroplets (NDs) introduced into the anterior chamber (AC) of the eye could potentially represent a treatment for glaucoma by increasing permeability in the aqueous outflow track.
View Article and Find Full Text PDFObjectives: In this study, a histopathological comparison was aimed between platelet-rich plasma (PRP) injection and dexamethasone injection in the prevention of scar formation after vocal fold injury.
Materials And Methods: Electrocautery was applied to damage the right and left vocal folds of a total of 12 New Zealand rabbits. PRP obtained from the rabbit's own blood was injected into the right vocal fold, and dexamethasone was injected into the left vocal fold.
Introduction: Glaucoma, a leading cause of irreversible blindness in the world, is a chronic neurodegenerative disease of multifactorial origin. Extensive research is ongoing to better understand, prevent, and treat progressive degeneration of retinal ganglion cells in glaucoma. While experimental models of glaucoma and postmortem tissues of human donors are analyzed for pathophysiological comprehension and improved treatment of this blinding disease, clinical samples of intraocular biofluids and blood collected from glaucoma patients are analyzed to identify predictive, diagnostic, and prognostic biomarkers.
View Article and Find Full Text PDFNeuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2022
Hypothesis: We hypothesize that dispersed TiCT MXene particle interactions are reflected in the bulk viscoelastic properties of the dispersions and can be analyzed using classical colloidal theory for anisotropic particles. The relevant kinetic theory for Brownian anisotropic particles is given by the Doi and Edwards (D-E) Model, and the Maxwell Model is used to fit the relaxation times as a function of frequency. Such behavior is relevant to a variety of MXene processing techniques, particularly printing and coating.
View Article and Find Full Text PDFGlaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate.
View Article and Find Full Text PDFMost studies of the effect of acute elevation of intraocular pressure (IOP) on ocular blood-flow have utilized optical coherence tomography (OCT) to characterize retinal and choroidal flow and vascular density. This study investigates the effect of acute IOP elevation on blood flow velocity in the retrobulbar arteries and veins supplying and draining the eye, which, unlike the retinal and choroidal vasculature, are not directly compressed as IOP is increased. By cannulation of the anterior chamber of 20 Sprague-Dawley rats, we increased IOP in 10 mmHg steps from 10 to 60 mmHg and returned to 10 mmHg.
View Article and Find Full Text PDFGlaucoma is a chronic neurodegenerative disease of the optic nerve and a leading cause of irreversible blindness, worldwide. While the experimental research using animal models provides growing information about cellular and molecular processes, parallel analysis of the clinical presentation of glaucoma accelerates the translational progress towards improved understanding, treatment, and clinical testing of glaucoma. Optic nerve axon injury triggers early alterations of retinal ganglion cell (RGC) synapses with function deficits prior to manifest RGC loss in animal models of glaucoma.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) expanding from the retina to the brain are primary victims of neurodegeneration in glaucoma, a leading cause of blindness; however, the neighboring astroglia survive the glaucoma-related stress and promote neuroinflammation. In light of diverse functions of caspase-8 in apoptosis, cell survival, and inflammation, this study investigated the importance of caspase-8 in different fates of glaucomatous RGCs and astroglia using two experimental approaches in parallel. In the first approach, cell type-specific responses of RGCs and astroglia to a caspase-8 cleavage-inhibiting pharmacological treatment were studied in rat eyes with or without experimentally induced glaucoma.
View Article and Find Full Text PDFGlaucoma is a complex neurodegenerative disease involving RGC axons, somas, and synapses at dendrites and axon terminals. Recent research advancements in the field have revealed a bigger picture of glaucomatous neurodegeneration that encompasses multiple stressors, multiple injury sites, multiple cell types, and multiple signaling pathways for asynchronous degeneration of RGCs during a chronic disease period. Optic nerve head is commonly viewed as the critical site of injury in glaucoma, where early injurious insults initiate distal and proximal signaling for axonal and somatic degeneration.
View Article and Find Full Text PDFBackground: Glia-driven neuroinflammation promotes neuron injury in glaucoma that is a chronic neurodegenerative disease of the optic nerve and a leading cause of irreversible blindness. Although therapeutic modulation of neuroinflammation is increasingly viewed as a logical strategy to avoid inflammatory neurotoxicity in glaucoma, current understanding of the molecular regulation of neuroinflammation is incomplete, and the molecular targets for immunomodulation remains unknown. Growing datasets pointed to nuclear factor-kappaB (NF-κB), a key transcriptional activator of inflammation, which was identified to be most affected in glaucomatous astroglia.
View Article and Find Full Text PDFSynthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery.
View Article and Find Full Text PDFPreclinical imaging, especially of rodent models, plays a major role in experimental ophthalmology. Our aim was to determine if ultrasound can be used to visualize and measure flow dynamics in the retrobulbar vessels supplying and draining the eye and the potential of contrast microbubbles to provide image and measurement enhancement. To accomplish this, we used a 128-element, 18 MHz linear array ultrasound probe and performed plane-wave imaging of the eyes of Sprague Dawley rats.
View Article and Find Full Text PDFCurr Ophthalmol Rep
June 2019
Purpose Of Review: This review aims to highlight the current knowledge about inflammatory mechanisms of neurodegeneration in glaucoma with emphasis on potential immunomodulation strategies.
Recent Findings: Glaucomatous retina and optic nerve present multiple evidences of inflammatory responses of astroglia, microglia, and blood-born immune cells. Although adaptive/protective responses of resident or systemic immune cells can support neurons and promote tissue repair mechanisms after injurious insults, prolonged inflammatory processes can also produce neurotoxic mediators.
Alzheimer's Disease (AD) is one of the most challenging diseases faced by humankind. AD is still not classified as curable because of the complex structure of pathologies underlying it. As the mean life expectancy of the world population constantly increases, the prevalence of AD and treatment costs for AD also grow rapidly.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2019
Purpose: Besides glia-driven neuroinflammation, growing evidence from analysis of human blood samples, isolated autoantibodies, and postmortem tissues also support systemic immune responses during neurodegeneration in glaucoma patients. To explore the T-cell-mediated component of systemic immunity, this study analyzed T lymphocytes in patients' blood.
Methods: Blood samples were collected from 32 patients with glaucoma and 21 nonglaucomatous controls, and mononuclear cells were isolated by Histopaque density gradient centrifugation.
Clin Ophthalmol
February 2018
Purpose: This pilot cross-sectional study aimed to determine age-related changes of the retinal nerve fiber layer (RNFL) thickness in retinal periphery by swept-source optical coherence tomography-based analysis.
Methods: Forty eyes of 40 healthy subjects were studied in three age groups, group 1 (20-40 years, n=15), group 2 (41-60 years, n=14), and group 3 (≥61 years, n=11). Wide-angle swept-source optical coherence tomography scans, including the optic disc and macula, were montaged with the nasal peripheral optical coherence tomography images acquired with a contralateral gaze.
Objective: Programmed death ligand 1 (PD-L1) found on tumor cells has recently been reported to have a key role in the development and dissemination of many tumors, such as lung and breast carcinomas. In this study, we retrospectively analyzed PD-L1 expression among different types of sarcomas.
Material And Method: Tissue microarrays of 3-4 mm diameter were composed from paraffin blocks of 222 various sarcomas.
Invest Ophthalmol Vis Sci
August 2017
Purpose: Glaucoma-related molecular biomarkers can improve clinical testing to diagnose the disease early, predict its prognosis, and monitor treatment responses. Based on the evidence of increased oxidative stress in glaucomatous tissues, this study analyzed oxidative stress-related biomarker candidates in blood and aqueous humor samples with or without glaucoma.
Methods: The blood and aqueous humor samples collected from carefully selected groups of 96 patients with glaucoma and 64 healthy subjects without glaucoma were included in the study.
Epithelioid malignant peripheral nerve sheath tumor (MPNST) is a rare, relatively less chemosensitive sarcoma. We report clinicopathologic features of 11 epithelioid MPNSTs, including rare forms, along with INI1 immunostaining and BRAF V600E mutation results. BRAF V600E mutation was tested by Real-time polymerase chain reaction (PCR) technique.
View Article and Find Full Text PDF