Salicyl-AMS (1) is a potent inhibitor of salicylate adenylation enzymes used in bacterial siderophore biosynthesis and a promising lead compound for the treatment of tuberculosis. An optimized, multigram synthesis is presented, which provides salicyl-AMS as its sodium salt (1·Na) in three synthetic steps followed by a two-step salt formation process. The synthesis proceeds in 11.
View Article and Find Full Text PDFThere is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the K of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtA), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies.
View Article and Find Full Text PDFMedium-ring natural products exhibit diverse biological activities but such scaffolds are underrepresented in probe and drug discovery efforts due to the limitations of classical macrocyclization reactions. We report herein a tandem oxidative dearomatization-ring-expanding rearomatization (ODRE) reaction that generates benzannulated medium-ring lactams directly from simple bicyclic substrates. The reaction accommodates diverse aryl substrates (haloarenes, aryl ethers, aryl amides, heterocycles) and strategic incorporation of a bridgehead alcohol generates a versatile ketone moiety in the products amenable to downstream modifications.
View Article and Find Full Text PDFThe Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular signaling systems regulated by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate bacterial cell-cell communication via small-molecule natural products and control the production of a variety of virulence factors. The MvfR system is activated by and controls the biosynthesis of the quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis of these quinolones is catalyzed by the anthranilyl-CoA synthetase PqsA.
View Article and Find Full Text PDFThe first successful inverse electron-demand Diels-Alder has been demonstrated with the 2-pyrone methyl coumalate in conjunction with substituted indoles. Utilizing 1-alkyl-3-chloroindoles as the electron-rich dienophile efficiently generates carbazoles without the need for additional metal catalysts. Through a thermal, one-pot Diels-Alder/decarboxylation/elimination domino sequence, access to a class of 3-methylcarbazoles is rapidly generated with exclusive regiocontrol in up to 90% yield.
View Article and Find Full Text PDFThe total synthesis of paracaseolide A, a valuable cell-cycle progression inhibitor, was accomplished in 8 steps from known compounds, with 6.6% overall yield. The synthetic strategy creates strong potential for diversification.
View Article and Find Full Text PDF