Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the decay of mesons produced in inelastic cosmic ray collisions.
View Article and Find Full Text PDFThe recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90 GeV, which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.
View Article and Find Full Text PDF