The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A.
View Article and Find Full Text PDFElectron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena.
View Article and Find Full Text PDFHighly photoluminescent hybrid lead halide perovskite nanoparticles have recently attracted wide interest in the context of high-stake applications, such as light emitting diodes (LEDs), light emitting transistors and lasers. In addition, they constitute ideal model systems to explore energy and charge transport phenomena occurring at the boundaries of nanocrystalline grains forming thin films in high-efficiency perovskite solar cells (PSCs). Here we report a complete photophysical study of CHNHPbBr perovskite nanoparticles suspended in chlorobenzene and highlight some important interaction properties.
View Article and Find Full Text PDFSolid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)](bis(trifluoromethylsulfonyl)imide) and [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)](bis(trifluoromethylsulfonyl)imide).
View Article and Find Full Text PDFUnravelling the nature of the interactions between photogenerated charge carriers in solar energy conversion devices is key to enhance performance. In this perspective, we discuss electroabsorption spectroscopy (EAS), as the spectral bandshape of the electroabsorption (EA) signal directly depends on the strength of the charge carrier interactions. For instance, the electroabsorption response in molecular or confined excitonic systems can be modelled perturbatively yielding the Stark effect.
View Article and Find Full Text PDFOrganic-inorganic perovskites are semiconductors used for applications in optoelectronics and photovoltaics. Micron and submicron perovskite patterns have been explored in semitransparent photovoltaic and lasing applications. In this work, we show that a polymeric medium can be used to create a patterned perovskite, by using a novel and inexpensive approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
Cyclometalated ruthenium sensitizers have been synthesized that differ with number of thiophene units on the auxiliary ligands. Sensitizers possessing four (SA25, SA246, and SA285) or none (SA282) sulfur atoms in their structures, were tested in solar cell devices employing I/I redox mediator, enabling an estimation of the influence of sulfur-iodine/iodide interactions on dye-sensitized solar cell (DSC) performance. Power conversion efficiencies over 6% under simulated AM 1.
View Article and Find Full Text PDFLead halide perovskites have over the past few years attracted considerable interest as photo absorbers in PV applications with record efficiencies now reaching 22%. It has recently been found that not only the composition but also the precise stoichiometry is important for the device performance. Recent reports have, for example, demonstrated small amount of PbI2 in the perovskite films to be beneficial for the overall performance of both the standard perovskite, CH3NH3PbI3, as well as for the mixed perovskites (CH3NH3)x(CH(NH2)2)(1-x)PbBryI(3-y).
View Article and Find Full Text PDFOver the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species.
View Article and Find Full Text PDFHerein, we present the precise stoichiometric control of methlyammonium lead iodide perovskite thin-films using high vacuum dual-source vapor-phase deposition. We found that UV/Vis absorption and emission spectra were inadequate for assessing precisely the perovskite composition. Alternatively, inductively coupled plasma mass spectrometry (ICP-MS) is used to give precise, reproducible, quantitative measurements of the I/Pb ratio without systematic errors that often result from varying device thicknesses and morphologies.
View Article and Find Full Text PDFWe report two new molecularly engineered push-pull dyes, i.e., YA421 and YA422, based on substituted quinoxaline as a π-conjugating linker and bulky-indoline moiety as donor and compared with reported IQ4 dye.
View Article and Find Full Text PDFMesoscopic solid-state solar cells based on the inorganic-organic hybrid perovskite CH3NH3PbI3 in conjunction with the amorphous organic semiconductor spiro-MeOTAD as a hole transport material (HTM) are investigated using impedance spectroscopy (IS). A model to interpret the frequency response of these devices is established by expanding and elaborating on the existing models used for the liquid and solid-state dye-sensitized solar cells. Furthermore, the influence of changing the additive concentrations of tert-butylpyridine and LiTFSI in the HTM and varying the HTM overlayer thickness on top of the sub-micrometer thick TiO2 on the extracted IS parameters is investigated.
View Article and Find Full Text PDFThe paradigm shift in dye sensitized solar cells (DSCs) - towards donor- π bridge-acceptor (D-π-A) dyes - increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3](3+/2+) redox-shuttle afforded superior performance compared to I3(-)/I(-).
View Article and Find Full Text PDFChemical doping is a powerful method to improve the charge transport and to control the conductivity in organic semiconductors (OSs) for a wide range of electronic devices. We demonstrate protic ionic liquids (PILs) as effective p-dopant in both polymeric and small molecule OSs. In particular, we show that PILs promote single electron oxidation, which increases the hole concentration in the semiconducting film.
View Article and Find Full Text PDFTransient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells.
View Article and Find Full Text PDFLithium salts have been shown to dramatically increase the conductivity in a broad range of polymeric and small molecule organic semiconductors (OSs). Here we demonstrate and identify the mechanism by which Li(+) p-dopes OSs in the presence of oxygen. After we established the lithium doping mechanism, we re-evaluate the role of lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) in 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-Spirobifluorene (Spiro-OMeTAD) based solid-state dye-sensitized solar cells (ss-DSSCs).
View Article and Find Full Text PDFWe report a pump-probe spectroscopy study of electron injection rates in dye-sensitized solar cell (DSSC) devices. We examine the case of working devices employing an N719 ruthenium sensitizer and an iodide electrolyte. Electron injection is found to occur mainly on a sub-100 fs time scale, followed by a slower component with a lifetime of 26.
View Article and Find Full Text PDFThe energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight.
View Article and Find Full Text PDFPhotoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes.
View Article and Find Full Text PDFThe development of metal-free organic sensitizers is a key issue in dye-sensitized solar cell research. We report successful photovoltaic conversion with a new class of stable tetrathiafulvalene derivatives, showing surprising electrochemical and kinetic properties. With time-resolved spectroscopy we could observe highly efficient regeneration of the photo-oxidized tetrathiafulvalene sensitizers, which were attached to a mesoporous TiO(2) film, by a redox mediator in the pores (iodide/tri-iodide), even though the measured driving force for regeneration was only approximately 150 mV.
View Article and Find Full Text PDFObjectives: A circular stapler introducer was developed to protect the head of the circular stapler and enable atraumatic introduction and advancement of the circular stapler without interfering with the application and safety of an anastomosis.
Methods: In a Phase I prospective study, we tested the feasibility and safety of the novel circular stapler introducer device in 60 consecutive patients undergoing left-sided colorectal resections.
Results: The median distance of the anastomoses from the anal verge was 12 cm (7-20, n = 60).
We describe the first case of efavirenz-induced urolithiasis in a 47-year-old HIV-positive patient. Urinary obstruction led to pyelonephritis and septic shock, requiring emergency ureteral catheterisation. The subsequent clinical course was favourable, allowing the patient's discharge on day 5.
View Article and Find Full Text PDF