Phylogenetic profiling in eukaryotes is of continued interest to study and predict the functional relationships between proteins. This interest is likely driven by the increased number of available diverse genomes and computational methods to infer orthologies. The evaluation of phylogenetic profiles has mainly focussed on reference genome selection in prokaryotes.
View Article and Find Full Text PDFTissue-resident memory CD8 T cells (T) constitute a noncirculating memory T cell subset that provides early protection against reinfection. However, how T arise from antigen-triggered T cells has remained unclear. Exploiting the T-restricted expression of Hobit, we used T reporter/deleter mice to study T differentiation.
View Article and Find Full Text PDFInsights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed.
View Article and Find Full Text PDFTissue-resident memory CD8 T cells (T cells) are crucial in protecting against reinvading pathogens, but the impact of reinfection on their tissue confinement and contribution to recall responses is unclear. We developed a unique lineage tracer mouse model exploiting the T-defining transcription factor homolog of Blimp-1 in T cells (Hobit) to fate map the T progeny in secondary responses. After reinfection, a sizeable fraction of secondary memory T cells in the circulation developed downstream of T cells.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
August 2020
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway.
View Article and Find Full Text PDFMulti-ciliary arrays promote fluid flow and cellular motility using the polarized and coordinated beating of hundreds of motile cilia. Tetrahymena basal bodies (BBs) nucleate and position cilia, whereby BB-associated striated fibers (SFs) promote BB anchorage and orientation into ciliary rows. Mutants that shorten SFs cause disoriented BBs.
View Article and Find Full Text PDFIn recent years it became clear that in eukaryotic genome evolution gene loss is prevalent over gene gain. However, the absence of genes in an annotated genome is not always equivalent to the loss of genes. Due to sequencing issues, or incorrect gene prediction, genes can be falsely inferred as absent.
View Article and Find Full Text PDFComparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches.
View Article and Find Full Text PDFBackground: Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO.
View Article and Find Full Text PDFHotspots of rapid genome evolution hold clues about human adaptation. We present a comparative analysis of nine whole-genome sequenced primates to identify high-confidence targets of positive selection. We find strong statistical evidence for positive selection in 331 protein-coding genes (3%), pinpointing 934 adaptively evolving codons (0.
View Article and Find Full Text PDFInsight into drug transport mechanisms is highly relevant to the efficacious treatment of tuberculosis (TB). Major problems in TB treatment are related to the transport of antituberculosis (anti-TB) drugs across human and mycobacterial membranes, affecting the concentrations of these drugs systemically and locally. Firstly, transporters located in the intestines, liver, and kidneys all determine the pharmacokinetics and pharmacodynamics of anti-TB drugs, with a high risk of drug-drug interactions in the setting of concurrent use of antimycobacterial, antiretroviral, and antidiabetic agents.
View Article and Find Full Text PDFCellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes.
View Article and Find Full Text PDFBackground: Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures.
Results: Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome.
Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome.
View Article and Find Full Text PDFThe transition zone (TZ) ciliary subcompartment is thought to control cilium composition and signalling by facilitating a protein diffusion barrier at the ciliary base. TZ defects cause ciliopathies such as Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP) and Joubert syndrome (JBTS). However, the molecular composition and mechanisms underpinning TZ organization and barrier regulation are poorly understood.
View Article and Find Full Text PDFDefects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2013
The intraflagellar transport (IFT) complex is an integral component of the cilium, a quintessential organelle of the eukaryotic cell. The IFT system consists of three subcomplexes [i.e.
View Article and Find Full Text PDFChromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive.
View Article and Find Full Text PDFThe TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species.
View Article and Find Full Text PDFSmall GTPases are molecular switches at the hub of many signaling pathways and the expansion of this protein family is interwoven with the origin of unique eukaryotic cell features. We have previously reported on the evolution of CDC25 Homology Domain containing proteins, which act as guanine nucleotide exchange factors (GEFs) for Ras-like proteins. We now report on the evolution of both the Ras-like small GTPases as well as the GTPase activating proteins (GAPs) for Ras-like small GTPases.
View Article and Find Full Text PDFThe members of the Ras-like superfamily of small GTP-binding proteins are molecular switches that are in general regulated in time and space by guanine nucleotide exchange factors and GTPase activating proteins. The Ras-like G-proteins Ras, Rap and Ral are regulated by a variety of guanine nucleotide exchange factors that are characterized by a CDC25 homology domain. Here we study the evolution of the Ras pathway by determining the evolutionary history of CDC25 homology domain coding sequences.
View Article and Find Full Text PDFThe formation of proteins into stable protein complexes plays a fundamental role in the operation of the cell. The study of the degree of evolutionary conservation of protein complexes between species and the evolution of protein-protein interactions has been hampered by lack of comprehensive coverage of the high-throughput (HTP) technologies that measure the interactome. We show that new high-throughput datasets on protein co-purification in yeast have a substantially lower false negative rate than previous datasets when compared to known complexes.
View Article and Find Full Text PDF