Background: This study aimed to elucidate the pathogenesis of idiopathic gingival fibromatosis (IGF).
Methods: Human gingival fibroblasts (hGFs) were isolated from patients with IGF and periodontitis. Differential gene expression in the hGFs was analyzed using RNA sequencing.
Drug-induced gingival enlargement (DIGE) is a side effect of ciclosporin, calcium channel blockers, and phenytoin. DIGE is a serious disease that leads to masticatory and esthetic disorders, severe caries, and periodontitis but currently has no standard treatment. We recently reported that nuclear receptor 4A1 (NR4A1) is a potential therapeutic target for DIGE.
View Article and Find Full Text PDFCherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, is the only gene identified to be responsible for cherubism.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive.
View Article and Find Full Text PDFMouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP.
View Article and Find Full Text PDFThree-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be implanted into tissue defects with no artificial scaffolds. In addition, the cellular properties and characteristics of the ECM in C-MSCs can be regulated in vitro. Most bone formation in the developmental and healing process is due to endochondral ossification, which occurs after bone collar formation surrounding cartilage derived from MSCs.
View Article and Find Full Text PDFThe impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection.
View Article and Find Full Text PDFCherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain-of-function mutations in SH3-domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock-in (KI) mice ( ) recapitulate human cherubism by developing inflammatory lesions in the jaw.
View Article and Find Full Text PDFEven though the receptor activator of the nuclear factor-κB ligand (RANKL) and its receptor RANK have an exclusive role in osteoclastogenesis, the possibility of RANKL/RANK-independent osteoclastogenesis has been the subject of a long-standing debate in bone biology. In contrast, it has been reported that calvarial injection of TNF-ɑ elicits significant osteoclastogenesis in the absence of RANKL/RANK in NF-κB2- and RBP-J-deficient mice, suggesting that inflammatory challenges and secondary gene manipulation are the prerequisites for RANKL/RANK-deficient mice to develop osteoclasts . Here we report that, even in the absence of RANKL ( ), cherubism mice ( ) harboring the homozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) develop tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts spontaneously.
View Article and Find Full Text PDFA sophisticated and delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts regulates bone metabolism. Optineurin (OPTN) is a gene involved in primary open-angle glaucoma and amyotrophic lateral sclerosis. Although its function has been widely studied in ophthalmology and neurology, recent reports have shown its possible involvement in bone metabolism through negative regulation of osteoclast differentiation.
View Article and Find Full Text PDFPeriodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis.
View Article and Find Full Text PDFRecently, the clinical applications of photodynamic therapy (PDT) in the management of malignant brain tumors have attracted significant attention. Meta-analysis of the observational studies on this treatment in high-grade gliomas (Eljamel, 2010) included more than 1,000 patients and reported median survival in cases of newly diagnosed and recurrent glioblastoma multiforme (GBM) of 16.1 and 10.
View Article and Find Full Text PDFPeriodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue.
View Article and Find Full Text PDFCherubism is a craniofacial disorder characterized by maxillary and mandibular bone destruction. Gain-of-function mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for the excessive bone resorption caused by fibrous inflammatory lesions. A homozygous knock-in (KI) mouse model for cherubism (Sh3bp2 ) develops autoinflammation resulting in systemic bone destruction.
View Article and Find Full Text PDFCurrently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old.
View Article and Find Full Text PDFBackground: An investigation of the mechanisms underlying the production of inflammatory cytokines through the stimulation of microorganisms on gingival epithelial cells may provide insights into the pathogenesis of the initiation of periodontitis. Lipid rafts, microdomains in the cell membrane, include a large number of receptors, and are centrally involved in signal transduction. We herein examined the involvement of lipid rafts in the expression of interleukin (IL-6) and IL-8 in gingival epithelial cells stimulated by periodontal pathogens.
View Article and Find Full Text PDFGingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor β (TGF-β). However, the molecular mechanisms by which microbes induce the activation of TGF-β remain unclear.
View Article and Find Full Text PDFObjective: The gingival epithelium plays an important role in protecting against the invasion of periodontal pathogens, and the permeability of gingival epithelial cells has been implicated in the initiation of periodontitis. Azithromycin (AZM) has been used in the treatment of chronic inflammatory airway diseases because it regulates cell-cell contact in airway epithelial cells. Therefore, AZM may also regulate barrier function in gingival epithelial cells.
View Article and Find Full Text PDFPeriodontitis is the most prevalent infectious disease caused by periodontopathic bacteria and is also a chronic inflammatory disease. Gingival crevicular fluid (GCF) is an inflammatory exudate that seeps into the gingival crevices or periodontal pockets around teeth with inflamed gingiva, and contains various materials including leukocytes and cytokines. Since gingival epithelial cells, which form a barrier against bacterial challenges, are affected by GCF, cytokines or other materials contained within GCF are engaged in the maintenance and disruption of the epithelial barrier.
View Article and Find Full Text PDFPeriodontitis is an infectious inflammatory disease. Our previous studies have revealed that irsogladine maleate (IM) regulates intercellular junctional function and chemokine secretion in gingival epithelium, resulting in the suppression of the onset of periodontal disease in a rat model. Therefore, it is plausible that IM is a promising preventive remedy for periodontal disease.
View Article and Find Full Text PDFThe physiological function of interleukin-6 within the central nervous system (CNS) is complex; interleukin-6 exerts neurotrophic and neuroprotective effects and yet can also function as a mediator of inflammation, demyelination, and astrogliosis depending on the cellular context. However, the roles of interleukin-6 in astrocytes are poorly understood. In the present study, we investigated the effect of the pro-inflammatory cytokine interleukin-6 on the production of the inflammatory mediator prostaglandin E(2) in mouse astrocytes.
View Article and Find Full Text PDF