Publications by authors named "Tetsuya Ueta"

Hydrogen bond formation and deformation are crucial for the structural construction and functional expression of biomolecules. However, direct observation of exchangeable hydrogens, especially for oxygen-bound hydrogens, relevant to hydrogen bonds is challenging for current structural analysis approaches. Using solution-state NMR spectroscopy, this study detected the functionally important exchangeable hydrogens (i.

View Article and Find Full Text PDF

We have developed a methodology for identifying further thermostabilizing mutations for an intrinsically thermostable membrane protein. The methodology comprises the following steps: (1) identifying thermostabilizing single mutations (TSSMs) for residues in the transmembrane region using our physics-based method; (2) identifying TSSMs for residues in the extracellular and intracellular regions, which are in aqueous environment, using an empirical force field FoldX; and (3) combining the TSSMs identified in steps (1) and (2) to construct multiple mutations. The methodology is illustrated for thermophilic rhodopsin whose apparent midpoint temperature of thermal denaturation is ∼91.

View Article and Find Full Text PDF

The membrane-embedded protein rhodopsin is widely produced in organisms as a photoreceptor showing a variety of light-dependent biological functions. To investigate its molecular features, rhodopsin is often extracted from cellular membrane lipids by a suitable detergent as "micelles." The extracted protein is purified by column chromatography and then is often reconstituted into "liposomes" by removal of the detergent.

View Article and Find Full Text PDF

We develop a new methodology best suited to the identification of thermostabilizing mutations for an intrinsically stable membrane protein. The recently discovered thermophilic rhodopsin, whose apparent midpoint temperature of thermal denaturation is measured to be ∼91.8 °C, is chosen as a paradigmatic target.

View Article and Find Full Text PDF

Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.

View Article and Find Full Text PDF