Recent evidence indicates that human ancestors utilized a combination of quadrupedal walking, climbing, and bipedal walking. Therefore, the origin of bipedalism may be linked to underlying mechanisms supporting diverse locomotor modes. This study aimed to elucidate foundations of varied locomotor modes from the perspective of motor control by identifying muscle synergies and demonstrating similarities in synergy compositions across different locomotor modes in chimpanzees and Japanese macaques.
View Article and Find Full Text PDFObjectives: Diagonal-sequence, diagonal-couplet (DSDC) gaits have been proposed as an adaptation to travel on discontinuously arranged arboreal branches. Only a few studies have examined primate gait adjustment to support discontinuity. We analyzed the gaits of Japanese macaques walking on the "ground" and two discontinuous conditions, "circle" and "point," to better understand the advantages of DSDC gaits on discontinuous supports.
View Article and Find Full Text PDFThe gluteus medius (GM) muscle in quadrupedal primates has long been thought to mainly act as a hip extensor. However, previous reports argue that it may be a prime hip medial rotator and functions to rotate the pelvis in the horizontal plane, suggesting the functional differentiation between the GM and other hip extensors as hamstrings. In this study, we aim to quantify the muscle actions of the GM and hamstrings using muscle moment arm lengths and discuss the functional differentiation among hip extensors.
View Article and Find Full Text PDF