Publications by authors named "Tetsuya Kimoto"

This article is part of a Special Issue "Estradiol and cognition". Estradiol (E2) is locally synthesized within the hippocampus and the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation.

View Article and Find Full Text PDF

We investigated age-induced changes in mRNA expression profiles of sex-steroidogenic enzymes and sex-steroid receptors in 3-, 12-, and 24-month-old male rat brain subregions [cerebral cortex (CC), hypothalamus (Hy) and cerebellum (CL)]. In many cases, the expression levels of mRNA decreased with age for androgen synthesis enzyme systems, including Cyp17a1, Hsd17b and Srd5a in the CC and CL, but not in the Hy. Estradiol synthase Cyp19a1 did not show age-induced decline in the Hy, and nearly no expression of Cyp19a1 was observed in the CC and CL over 3-24 m.

View Article and Find Full Text PDF

Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.

View Article and Find Full Text PDF

Rapid modulation of hippocampal synaptic plasticity through synaptic estrogen receptors is an essential topic. We analyzed estradiol-induced modulation of CA1 dendritic spines using adult male ERαKO and ERβKO mice. A 2h treatment of estradiol particularly increased the density of middle-head spines (diameter 0.

View Article and Find Full Text PDF

Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes.

View Article and Find Full Text PDF

Objective: Low dose exposure to endocrine disrupters (environmental chemicals) may induce hormone-like effects on wildlife and humans. bisphenol A (BPA) might disturb the neuronal signaling regulated by endogenous estrogens. We investigated the rapid modulation effects of 10nM BPA, a typical endocrine disruptor, on long-term depression (LTD) of adult rat hippocampal slices.

View Article and Find Full Text PDF

Background: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus.

Methodology/principal Findings: Here we demonstrated the mechanisms of rapid effect (∼1 h) of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices.

View Article and Find Full Text PDF

We demonstrated the rapid effects of 10nM bisphenol A (BPA) on the spinogenesis of adult rat hippocampal slices. The density of spines was analyzed by imaging Lucifer Yellow-injected CA1 neurons in slices. Not only the total spine density but also the head diameter distribution of spine was quantitatively analyzed.

View Article and Find Full Text PDF

The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ).

View Article and Find Full Text PDF

Background: Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21).

Methodology/principal Findings: The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus.

View Article and Find Full Text PDF

We investigated rapid protection effect by estradiol on corticosterone (CORT)-induced suppression of synaptic transmission. Rapid suppression by 1 μM CORT of long-term potentiation (LTP) at CA3-CA1 synapses was abolished via coperfusion of 1 nM estradiol. N-methyl-D-aspartate (NMDA) receptor-derived field excitatory postsynaptic potential (NMDA-R-fEPSP) was used to analyze the mechanisms of these events.

View Article and Find Full Text PDF

Accurate 3D determination of postsynaptic structures is essential to our understanding memory-related function and pathology in neurons. However, current methods of spine analysis require time-consuming and labor-intensive manual spine identification in large image data sets. Therefore, a realistic implementation of algorithm is necessary to replace manual identification.

View Article and Find Full Text PDF

Estradiol is synthesized from cholesterol in hippocampal neurons of adult rats by cytochrome P450 and hydroxysteroid dehydrogenase enzymes. These enzymes are expressed in the glutamatergic neurons of the hippocampus. Surprisingly, the concentration of estradiol and androgen in the hippocampus is significantly higher than that in circulation.

View Article and Find Full Text PDF

Sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. Accumulating evidence shows that hippocampal neurons synthesize both estrogen and androgen. Recently, we also revealed the hippocampal synthesis of corticosteroids.

View Article and Find Full Text PDF

Although sex steroids play a crucial role in the postnatal brain development, the age-related changes in the hippocampal steroidogenesis remain largely unknown. We performed comprehensive investigations for the mRNA expressions of 26 sex steroidogenic enzymes/proteins and three sex steroid receptors in the male rat hippocampus, at the ages of postnatal day (PD) 1, PD4, PD7, PD10, PD14, 4 wk, and 12 wk (adult), by RT-PCR/Southern blotting analysis. The relative expression levels of these enzymes/receptors at PD1 were Srd5a1 > Star > Ar ∼ Hsd17b4 ∼ Hsd17b1 ∼ Hsd17b7 ∼ Esr1 ∼ Srd5a2 > Hsd17b3 > Esr2 > Cyp11a1 > Cyp17a1 > Cyp19a1 ∼ Hsd17b2 > 3β-hydroxysteroid dehydrogenase I.

View Article and Find Full Text PDF

The hippocampus is a center for learning and memory as well as a target of Alzheimer's disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention.

View Article and Find Full Text PDF

Estradiol (E2) and other sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. To clarify the mechanisms for these events, it is important to determine the respective role of circulating vs. locally produced sex steroids in the male hippocampus.

View Article and Find Full Text PDF

Sex-steroid synthesis in the hippocampus had been thought to be much more active at the neonatal stage than at the adult stage. However, the detailed comparison between these two stages had not been demonstrated yet. Here we performed the comparison about the mRNA level of steroidogenic enzymes and the rate of steroid metabolism between these two stages of the hippocampus.

View Article and Find Full Text PDF

Imaging of trafficking of endosomes containing low-density lipoprotein (LDL) is useful to analyze cholesterol transport in adrenocortical cells. At 60 min after the application of fluorescently labeled LDL to adrenocortical cells, individual endosomes containing LDL were demonstrated to undergo frequent switching between forward and reverse movement and immobility. The population of moving endosomes (>or=0.

View Article and Find Full Text PDF

Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200-1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis.

View Article and Find Full Text PDF

Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. However, molecular mechanisms of the rapid action are yet largely unknown. We here describe rapid modulation of representative synaptic plasticity, i.

View Article and Find Full Text PDF

It is believed that sex hormones are synthesized in the gonads and reach the brain via the blood circulation. In contrast with this view, the authors have demonstrated that sex hormones are also synthesized locally in the hippocampus and that these steroids act rapidly to modulate neuronal synaptic plasticity. The authors demonstrated that estrogens are locally synthesized from cholesterol through dehydroepiandrosterone and testosterone in adult hippocampal neurons.

View Article and Find Full Text PDF

Rapid modulation of hippocampal synaptic plasticity by estrogen has long been a hot topic, but analysis of molecular mechanisms via synaptic estrogen receptors has been seriously difficult. Here, two types of independent synaptic plasticity, long-term depression (LTD) and spinogenesis, were investigated, in response to 17beta-estradiol and agonists of estrogen receptors using hippocampal slices from adult male rats. Multi-electrode investigations demonstrated that estradiol rapidly enhanced LTD not only in CA1 but also in CA3 and dentate gyrus.

View Article and Find Full Text PDF

In neuroendocrinology, it is believed that steroid hormones are synthesized in the gonads and/or adrenal glands, and reach the brain via the blood circulation. In contrast to this view, we are in progress of demonstrating that estrogens and androgens are also synthesized locally by cytochrome P450s in the hippocampus, and that these steroids act rapidly to modulate neuronal synaptic plasticity. We demonstrated that estrogens were locally synthesized in the adult hippocampal neurons.

View Article and Find Full Text PDF

Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17beta-estradiol on the density and morphology of spines in the stratum oriens (s.o.

View Article and Find Full Text PDF